물리:베테_가설_풀이_bethe_ansatz

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revisionBoth sides next revision
물리:베테_가설_풀이_bethe_ansatz [2023/03/29 09:48] minwoo물리:베테_가설_풀이_bethe_ansatz [2023/09/05 15:46] – external edit 127.0.0.1
Line 617: Line 617:
  
 $$ \\ $$ $$ \\ $$
-베테 가설 풀이를 진행하면, 이러한 $E=0$에 대해서 파동함수 $\psi(x_1,x_2,...,x_N)$이 $0$이 되는 것으로 잘못 이해하게 될 수 있다.+베테 가설 풀이를 진행하면, 이러한 $E=0$에 대해서 파동함수 $\psi(x_1,x_2,...,x_N)$이 $0$이 되는 것으로 잘못 이해할 수 있는 경우가 생긴다.
  
 가령, 위에서 $N=2$에 대한 TASEP 모형을 풀이할 때, 각 계수 사이의 비율에 대한 조건식을 다음과 같이 얻었다. 가령, 위에서 $N=2$에 대한 TASEP 모형을 풀이할 때, 각 계수 사이의 비율에 대한 조건식을 다음과 같이 얻었다.
Line 624: Line 624:
  
 $$ \\ $$ $$ \\ $$
-이때, $E = \sum_{i=1}^2 (1-1/z_i)$가 $0$인 경우는 $z_1=z_2=1$인 경우로서 $z_1=z_2$가 서로 같은 경우이다.+이때, $E = \sum_{i=1}^2 (1-1/z_i)$가 $0$인 경우는 $z_1=z_2=1$인 경우로서 $z_1=z_2$가 서로 같은 경우이다. (아래의 '$z$에 대한 조건' 내용 참고.)
  
 따라서, $ \frac{A_{21}}{A_{12}}=-\frac{z-1}{z-1}= -1$으로서 따라서, $ \frac{A_{21}}{A_{12}}=-\frac{z-1}{z-1}= -1$으로서
Line 631: Line 631:
  
 $$\psi(x_1,x_2)=A_{12}z^{x_1}z^{x_2} + A_{21}z^{x_1}z^{x_2}= A_{12}(z^{x_1}z^{x_2}-z^{x_1}z^{x_2})=0.$$ $$\psi(x_1,x_2)=A_{12}z^{x_1}z^{x_2} + A_{21}z^{x_1}z^{x_2}= A_{12}(z^{x_1}z^{x_2}-z^{x_1}z^{x_2})=0.$$
- +  
-하지만, 이것은 옳지 않다. 앞서 얻은 계수의 비율에 대한 조건은 원래 다음의 형태를 가졌다.+$$ \\ $$ 
 +그러나, 이것은 옳지 않다. 앞서 얻은 계수의 비율에 대한 조건은 원래 다음의 형태를 가졌다.
  
 $$ $$
Line 659: Line 660:
  
 $$ \\ $$ $$ \\ $$
-===== 참고문헌 =====+ 
 +===== $z$에 대한 조건 ===== 
 +$N=1$의 예에서 파동함수를 도입할 때, $z=e^{ik}$로서 $z$의 크기가 $1$이라는 조건이 포함되었다. 
 + 
 +$N=2,3,...$에 대해서도 마찬가지로, $z$의 크기가 $1$이라는 조건은 Bethe ansatz에 포함되어야 한다. 
 + 
 + 
 +이러한 조건은 고유값이 $E=0$인 경우가 정상 상태(stationary state)의 해이며, 그 해가 유일한 해라는 것을 보이는데 있어서 중요하다. 
 + 
 +$$ \\ $$ 
 +예를 들어 $N=2$에서 $E = \sum_{i=1}^2 (1-1/z_i)$이고, 그러한 $E=0$를 만족하는 $\{z_1, z_2\}$의 쌍은 무수히 많다. 
 + 
 +즉, (위에서 언급한 $z$에 대한 조건이 없다면) 다음을 만족하기만 하면 TASEP의 $E=0$에 해당하는 해가 됨을 알 수 있다. 
 + 
 +$$ 
 +z_2 = \frac{z_1}{-1+2 z_1} 
 +$$ 
 + 
 +이렇듯 변수는 2개이고 풀이되는 조건식은 1개이므로, 해가 유일하지 않고 무수히 많게 되어 
 + 
 +$z_1,z_2$의 크기에 대한 제한 조건이 추가로 필요하다. 
 +  
 +$$ \\ $$ 
 +베테 가설 풀이는 원래 1차원 양자 사슬 모형을 풀이할 때에는 $z_i=e^{ik_i}$로 설정하여 해를 도입하므로 
 + 
 +그를 따라서, 일반적인 $N$의 경우도 $z$의 크기가 $1$과 같다는 조건을 포함하면 
 + 
 +TASEP의 $E=0$일 때의 해가 $z_1=z_2=1$로서 유일하다는 것을 다음과 같이 확인할 수 있다. 
 + 
 +{{:물리:bethe_mathematica.png?650|}} 
 + 
 +(Mathematica를 이용하여) 파란색 그래프는 조건에 따라 $|z_1|=1$을 그린 것이고, 주황색 그래프는 $|z_2|=|\frac{z_1}{-1+2 z_1}|=1$를 만족하는 $z_1$을 그린 것이다. 
 + 
 +두 그래프의 접점이 $z_1=1$이므로 $z_2=\frac{z_1}{-1+2 z_1}=\frac{1}{-1+2}=1$로서 $z_1=z_2=1$이다. 
 + 
 + 
 +$$ \\ $$ 
 +===== 참고 문헌 =====
  
 Jae Dong Noh, Exactly Solvable Many-Body Stochastic Processes, 2014. Jae Dong Noh, Exactly Solvable Many-Body Stochastic Processes, 2014.
  • 물리/베테_가설_풀이_bethe_ansatz.txt
  • Last modified: 2023/09/07 06:56
  • by minwoo