수학:범함수

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revisionBoth sides next revision
수학:범함수 [2020/01/09 17:07] – [예] admin수학:범함수 [2020/01/10 11:40] – [세 번째 항] admin
Line 38: Line 38:
 을 얻게 된다. 을 얻게 된다.
  
-=====감쇠 오일러 방정식의 분석=====+=====또다른 예: 감쇠 오일러 방정식의 분석=====
 밀도장 $\rho(\vec{r},t)$와 퍼텐셜 $U(|\vec{r}-\vec{r}'|)$에 대해 $\Phi(\vec{r},t) \equiv \int \rho(\vec{r}',t) U(|\vec{r}-\vec{r}'|) d\vec{r}'$라고 정의하자. 다음과 같은 계를 고려하는데 밀도장 $\rho(\vec{r},t)$와 퍼텐셜 $U(|\vec{r}-\vec{r}'|)$에 대해 $\Phi(\vec{r},t) \equiv \int \rho(\vec{r}',t) U(|\vec{r}-\vec{r}'|) d\vec{r}'$라고 정의하자. 다음과 같은 계를 고려하는데
 \begin{eqnarray*} \begin{eqnarray*}
Line 52: Line 52:
 임을 보일 수 있다. 임을 보일 수 있다.
  
 +====첫 번째 항====
 +표기를 약간 간단하게 하기 위해 $\Psi(\rho) \equiv \int^\rho \frac{P(\rho')}{\rho'^2} d\rho'$라 하자.
 +\begin{eqnarray*}
 +\frac{\delta}{\delta \rho(\vec{r})} \int \rho(\vec{r}') \Psi(\vec{r}') d\vec{r}'&=&
 +\lim_{\epsilon \to 0} \frac{1}{\epsilon} \left\{ \int \left[ \rho(\vec{r}') + \epsilon \delta (\vec{r}'-\vec{r}) \right]
 +\int^{\rho(\vec{r}') + \epsilon \delta (\vec{r}'-\vec{r})} \frac{P(\rho')}{\rho'^2} d\rho' d\vec{r}'
 +- \int \rho(\vec{r}') \int^{\rho(\vec{r}')} \frac{P(\rho')}{\rho'^2} d\rho' d\vec{r}'
 +\right\}\\
 +&\approx&
 +\lim_{\epsilon \to 0} \frac{1}{\epsilon} \left\{ \int \left[ \rho(\vec{r}') + \epsilon \delta (\vec{r}'-\vec{r}) \right]
 +\left[ \int^{\rho(\vec{r}')} \frac{P(\rho')}{\rho'^2} d\rho'
 + + \frac{P[\rho(\vec{r}')]}{\rho^2(\vec{r}')} \epsilon \delta (\vec{r}'-\vec{r})
 +\right] d\vec{r}'
 +- \int \rho(\vec{r}') \int^{\rho(\vec{r}')} \frac{P(\rho')}{\rho'^2} d\rho' d\vec{r}'
 +\right\}\\
 +&\approx&
 +\int \rho(\vec{r}') \frac{P[\rho(\vec{r}')]}{\rho^2(\vec{r}')} \delta(\vec{r}'-\vec{r}) d\vec{r}' + \int \delta(\vec{r}'-\vec{r}) \int^{\rho(\vec{r}')} \frac{P(\rho')}{\rho'^2} d\rho'\\
 +&=&
 +\frac{P[\rho(\vec{r})]}{\rho(\vec{r})} + \int^{\rho(\vec{r})} \frac{P(\rho')}{\rho'^2} d\rho'\\
 +&=&
 +\frac{P[\rho(\vec{r})]}{\rho(\vec{r})} + \Psi[\rho(\vec{r})]
 +\end{eqnarray*}
  
 +====두 번째 항====
 +\begin{eqnarray*}
 +\frac{\delta}{\delta \rho(\vec{r})} \int \rho(\vec{r}') \Phi(\vec{r}') d\vec{r}'
 +&=& \frac{\delta}{\delta \rho(\vec{r})} \int \rho(\vec{r}') \int \rho(\vec{r}'') U(|\vec{r}'-\vec{r}''|) d\vec{r}'' d\vec{r}'\\
 +&=& \lim_{\epsilon\to 0} \frac{1}{\epsilon} \left\{ \int \left[ \rho(\vec{r}') + \epsilon \delta(\vec{r}-\vec{r}') \right]
 +\left[ \rho(\vec{r}'') + \epsilon \delta(\vec{r}-\vec{r}'') \right] U(|\vec{r}'-\vec{r}''|) d\vec{r}'' d\vec{r}'
 +- \int \rho(\vec{r}') \int \rho(\vec{r}'') U(|\vec{r}'-\vec{r}''|) d\vec{r}'' d\vec{r}'
 +\right\}\\
 +&\approx&
 +\int \rho(\vec{r}') \delta(\vec{r}-\vec{r}'') U(|\vec{r}'-\vec{r}''|) d\vec{r}'' d\vec{r}'
 ++\int \rho(\vec{r}'') \delta(\vec{r}-\vec{r}') U(|\vec{r}'-\vec{r}''|) d\vec{r}'' d\vec{r}'\\
 +&=& \int \rho(\vec{r}') U(|\vec{r}'-\vec{r}|) d\vec{r}' + \int \rho(\vec{r}'') U(|\vec{r}''-\vec{r}|) d\vec{r}''\\
 +&=& 2\Phi(\vec{r})
 +\end{eqnarray*}
 +
 +====세 번째 항====
 +이 계산이 가장 간단하다.
 +\begin{eqnarray*}
 +\frac{\delta}{\delta \rho(\vec{r})} \int \rho(\vec{r}') \frac{|\vec{u}(\vec{r}')|^2}{2} d\vec{r}' &=&
 +\lim_{\epsilon\to 0} \frac{1}{\epsilon} \left\{ \int \left[ \rho(\vec{r}') + \epsilon \delta (\vec{r}-\vec{r}') \right] \frac{|\vec{u}(\vec{r}')|^2}{2} d\vec{r}'
 +- \int \rho(\vec{r}') \frac{|\vec{u}(\vec{r}')|^2}{2} d\vec{r}'\right\}\\
 +&=&
 +\int \delta (\vec{r}-\vec{r}') \frac{|\vec{u}(\vec{r}')|^2}{2} d\vec{r}'\\
 +&=& \frac{|\vec{u}(\vec{r})|^2}{2}
 +\end{eqnarray*}
 +
 +====$F$의 미분====
 +연쇄법칙(chain rule)에 의해
 +\[ \frac{dF}{dt} = \int d\vec{r} \left( \frac{\delta F}{\delta \rho(\vec{r})} \frac{\partial \rho(\vec{r},t)}{\partial t}
 ++ \frac{\delta F}{\delta u_x(\vec{r})} \frac{\partial u_x(\vec{r},t)}{\partial t}
 ++ \frac{\delta F}{\delta u_y(\vec{r})} \frac{\partial u_y(\vec{r},t)}{\partial t}
 ++ \frac{\delta F}{\delta u_z(\vec{r})} \frac{\partial u_z(\vec{r},t)}{\partial t}
 +\right) \]
 +$\vec{u}$의 성분별로도 변분하는 과정이 필요하다. 예를 들어
 +\begin{eqnarray*}
 +\frac{\delta}{\delta u_x(\vec{r})} \int \rho(\vec{r}') \frac{u_x^2(\vec{r}') + u_y^2(\vec{r}') + u_z^2(\vec{r}')}{2} d\vec{r}' &=&
 +\lim_{\epsilon \to 0} \frac{1}{\epsilon} \int \rho(\vec{r}') \frac{[u_x(\vec{r}') + \epsilon \delta(\vec{r}'-\vec{r})]^2 - u_x^2(\vec{r}')}{2} d\vec{r}'\\
 +&\approx& \int \rho(\vec{r}') \delta(\vec{r}'-\vec{r}) u_x(\vec{r}') d\vec{r}' = \rho(\vec{r}) u_x(\vec{r})
 +\end{eqnarray*}
 ======참고 문헌====== ======참고 문헌======
   * T. Lancaster and S. J. Blundell, //Quantum Field Theory for the Gited Amateur// (Oxford Univerty Press, 2014).   * T. Lancaster and S. J. Blundell, //Quantum Field Theory for the Gited Amateur// (Oxford Univerty Press, 2014).
   * P. H. Chavanis, Eur. Phys. J. B 62, 179 (2008) [[doi:10.1140/epjb/e2008-00142-9|(link)]].   * P. H. Chavanis, Eur. Phys. J. B 62, 179 (2008) [[doi:10.1140/epjb/e2008-00142-9|(link)]].
  
  • 수학/범함수.txt
  • Last modified: 2023/09/05 15:46
  • by 127.0.0.1