수학:1차_선형_상미분방정식

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revisionBoth sides next revision
수학:1차_선형_상미분방정식 [2019/01/03 12:11] admin수학:1차_선형_상미분방정식 [2024/05/23 20:03] – [동차] admin
Line 45: Line 45:
  
 $$\int_0^xdx_1\int_0^{x_1}dx_2P(x_1)P(x_2) y_0 = \mathcal{T}\frac{1}{2}\left[\int_0^xdx'P(x')\right]^2 y_0$$ $$\int_0^xdx_1\int_0^{x_1}dx_2P(x_1)P(x_2) y_0 = \mathcal{T}\frac{1}{2}\left[\int_0^xdx'P(x')\right]^2 y_0$$
-를 얻을 수 있다. 보다 일반적인 경우를 증명하기 위해 $x_1<x_2<\cdots<x_n<x$일 때+를 얻을 수 있다.  
 + 
 +===일반화=== 
 +보다 일반적인 경우를 증명하기 위해 $x_1<x_2<\cdots<x_n<x$일 때
  
 $$\int_0^xdx_1\int_0^{x_1}dx_2\cdots\int_0^{x_n}dx_{n-1}P(x_1)P(x_2)\cdots P(x_n) y_0 = \mathcal{T}\frac{1}{n!}\left[\int_0^xdx'P(x')\right]^n y_0$$ $$\int_0^xdx_1\int_0^{x_1}dx_2\cdots\int_0^{x_n}dx_{n-1}P(x_1)P(x_2)\cdots P(x_n) y_0 = \mathcal{T}\frac{1}{n!}\left[\int_0^xdx'P(x')\right]^n y_0$$
Line 85: Line 88:
 \end{eqnarray*} \end{eqnarray*}
 괄호 안의 내용을 살펴보면, 앞의 동차 방정식에서 했던 것과 매우 유사하게 시간정렬 연산자 $\mathcal{T}$를 통해 표현할 수 있다:  괄호 안의 내용을 살펴보면, 앞의 동차 방정식에서 했던 것과 매우 유사하게 시간정렬 연산자 $\mathcal{T}$를 통해 표현할 수 있다: 
-$$\int_{x_3}^x dx_1 \int_{x_3}^{x_1} dx_2 P(x_1) P(x_2) Q(x_3) = \frac{\mathcal{T}}{2} \left[ \int_{x_3}^x dx'' P(x'') \right]^2 Q(x_3)$$+$$\int_{x_3}^x dx_1 \int_{x_3}^{x_1} dx_2 P(x_1) P(x_2) Q(x_3) = \frac{\mathcal{T}}{2} \left[ \int_{x_3}^x dx'' P(x'') \right]^2 Q(x_3).$$
 따라서 $Q(x)$로 인해 새로 등장한 항들을 다시 써보면 따라서 $Q(x)$로 인해 새로 등장한 항들을 다시 써보면
 \begin{eqnarray*} \begin{eqnarray*}
  • 수학/1차_선형_상미분방정식.txt
  • Last modified: 2024/05/23 20:58
  • by admin