수학:1차_선형_상미분방정식

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revisionBoth sides next revision
수학:1차_선형_상미분방정식 [2019/01/03 12:11] admin수학:1차_선형_상미분방정식 [2024/05/23 20:35] – [일반화] admin
Line 45: Line 45:
  
 $$\int_0^xdx_1\int_0^{x_1}dx_2P(x_1)P(x_2) y_0 = \mathcal{T}\frac{1}{2}\left[\int_0^xdx'P(x')\right]^2 y_0$$ $$\int_0^xdx_1\int_0^{x_1}dx_2P(x_1)P(x_2) y_0 = \mathcal{T}\frac{1}{2}\left[\int_0^xdx'P(x')\right]^2 y_0$$
-를 얻을 수 있다. 보다 일반적인 경우를 증명하기 위해 $x_1<x_2<\cdots<x_n<x$일 때 +를 얻을 수 있다. 
- +
-$$\int_0^xdx_1\int_0^{x_1}dx_2\cdots\int_0^{x_n}dx_{n-1}P(x_1)P(x_2)\cdots P(x_n) y_0 = \mathcal{T}\frac{1}{n!}\left[\int_0^xdx'P(x')\right]^n y_0$$ +
- +
-를 가정하자. 그리고 여기에 $x$에 대한 미분을 취하면 +
- +
-\begin{align*} +
-\frac{d}{dx}\int_0^xdx_1\int_0^{x_1}dx_2\cdots\int_0^{x_{n+1}}dx_n P(x_1)P(x_2)\cdots P(x_n) y_0 &= P(x)\int_0^xdx_2\int_0^{x_2}dx_3\cdots\int_0^{x_n}dx_{n+1}P(x_2)P(x_3)\cdots P(x_{n+1}) y_0 \\ +
-&= \mathcal{T} P(x) \frac{1}{n!}\left[\int_0^xdx'P(x')\right]^n y_0 \\ +
-&= \mathcal{T} \frac{d}{dx}\frac{1}{(n+1)!}\left[\int_0^xdx'P(x')\right]^{n+1} y_0 +
-\end{align*} +
- +
-를 얻을 수 있고 위에서 $n=1$일 때 성립하는 것을 보였으므로 이것은 수학적 귀납법에 의해 자연수 $n$에 대해 일반적으로 성립한다는 것을 알 수 있다. 결론적으로 해는+
  
 +일반적으로
 +$$\int_0^xdx_1\int_0^{x_1}dx_2\cdots\int_0^{x_{n-1}}dx_{n}P(x_1)P(x_2)\cdots P(x_{n}) y_0 = \mathcal{T}\frac{1}{n!}\left[\int_0^xdx'P(x')\right]^n y_0$$
 +이다. 결론적으로 해는
 $$y(x) = \sum_{n=0}^\infty \mathcal{T}\frac{(-1)^n}{n!}\left[\int_0^xdx'P(x')\right]^n y_0 = \mathcal{T}\exp\left[-\int_0^xdx^\prime P(x^\prime)\right]y_0$$ $$y(x) = \sum_{n=0}^\infty \mathcal{T}\frac{(-1)^n}{n!}\left[\int_0^xdx'P(x')\right]^n y_0 = \mathcal{T}\exp\left[-\int_0^xdx^\prime P(x^\prime)\right]y_0$$
- 
 이다.  이다. 
  
Line 85: Line 75:
 \end{eqnarray*} \end{eqnarray*}
 괄호 안의 내용을 살펴보면, 앞의 동차 방정식에서 했던 것과 매우 유사하게 시간정렬 연산자 $\mathcal{T}$를 통해 표현할 수 있다:  괄호 안의 내용을 살펴보면, 앞의 동차 방정식에서 했던 것과 매우 유사하게 시간정렬 연산자 $\mathcal{T}$를 통해 표현할 수 있다: 
-$$\int_{x_3}^x dx_1 \int_{x_3}^{x_1} dx_2 P(x_1) P(x_2) Q(x_3) = \frac{\mathcal{T}}{2} \left[ \int_{x_3}^x dx'' P(x'') \right]^2 Q(x_3)$$+$$\int_{x_3}^x dx_1 \int_{x_3}^{x_1} dx_2 P(x_1) P(x_2) Q(x_3) = \frac{\mathcal{T}}{2} \left[ \int_{x_3}^x dx'' P(x'') \right]^2 Q(x_3).$$
 따라서 $Q(x)$로 인해 새로 등장한 항들을 다시 써보면 따라서 $Q(x)$로 인해 새로 등장한 항들을 다시 써보면
 \begin{eqnarray*} \begin{eqnarray*}
  • 수학/1차_선형_상미분방정식.txt
  • Last modified: 2024/05/23 20:58
  • by admin