수학:1차_선형_상미분방정식

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revisionBoth sides next revision
수학:1차_선형_상미분방정식 [2023/09/05 15:46] – external edit 127.0.0.1수학:1차_선형_상미분방정식 [2024/05/23 20:03] – [동차] admin
Line 45: Line 45:
  
 $$\int_0^xdx_1\int_0^{x_1}dx_2P(x_1)P(x_2) y_0 = \mathcal{T}\frac{1}{2}\left[\int_0^xdx'P(x')\right]^2 y_0$$ $$\int_0^xdx_1\int_0^{x_1}dx_2P(x_1)P(x_2) y_0 = \mathcal{T}\frac{1}{2}\left[\int_0^xdx'P(x')\right]^2 y_0$$
-를 얻을 수 있다. 보다 일반적인 경우를 증명하기 위해 $x_1<x_2<\cdots<x_n<x$일 때+를 얻을 수 있다.  
 + 
 +===일반화=== 
 +보다 일반적인 경우를 증명하기 위해 $x_1<x_2<\cdots<x_n<x$일 때
  
 $$\int_0^xdx_1\int_0^{x_1}dx_2\cdots\int_0^{x_n}dx_{n-1}P(x_1)P(x_2)\cdots P(x_n) y_0 = \mathcal{T}\frac{1}{n!}\left[\int_0^xdx'P(x')\right]^n y_0$$ $$\int_0^xdx_1\int_0^{x_1}dx_2\cdots\int_0^{x_n}dx_{n-1}P(x_1)P(x_2)\cdots P(x_n) y_0 = \mathcal{T}\frac{1}{n!}\left[\int_0^xdx'P(x')\right]^n y_0$$
  • 수학/1차_선형_상미분방정식.txt
  • Last modified: 2024/05/23 20:58
  • by admin