수학:1차_선형_상미분방정식

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revisionBoth sides next revision
수학:1차_선형_상미분방정식 [2023/09/05 15:46] – external edit 127.0.0.1수학:1차_선형_상미분방정식 [2024/05/23 20:03] – [동차] admin
Line 45: Line 45:
  
 $$\int_0^xdx_1\int_0^{x_1}dx_2P(x_1)P(x_2) y_0 = \mathcal{T}\frac{1}{2}\left[\int_0^xdx'P(x')\right]^2 y_0$$ $$\int_0^xdx_1\int_0^{x_1}dx_2P(x_1)P(x_2) y_0 = \mathcal{T}\frac{1}{2}\left[\int_0^xdx'P(x')\right]^2 y_0$$
-를 얻을 수 있다. 보다 일반적인 경우를 증명하기 위해 $x_1<x_2<\cdots<x_n<x$일 때+를 얻을 수 있다.  
 + 
 +====일반화==== 
 +보다 일반적인 경우를 증명하기 위해 $x_1<x_2<\cdots<x_n<x$일 때
  
 $$\int_0^xdx_1\int_0^{x_1}dx_2\cdots\int_0^{x_n}dx_{n-1}P(x_1)P(x_2)\cdots P(x_n) y_0 = \mathcal{T}\frac{1}{n!}\left[\int_0^xdx'P(x')\right]^n y_0$$ $$\int_0^xdx_1\int_0^{x_1}dx_2\cdots\int_0^{x_n}dx_{n-1}P(x_1)P(x_2)\cdots P(x_n) y_0 = \mathcal{T}\frac{1}{n!}\left[\int_0^xdx'P(x')\right]^n y_0$$
  • 수학/1차_선형_상미분방정식.txt
  • Last modified: 2024/05/23 20:58
  • by admin