진화생물학:한곳_짝짓기_경쟁

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revisionBoth sides next revision
진화생물학:한곳_짝짓기_경쟁 [2021/05/10 19:23] – [이배체] admin진화생물학:한곳_짝짓기_경쟁 [2021/10/25 23:25] – [검증] jiwon
Line 90: Line 90:
 ======검증====== ======검증======
  
 +위 내용의 검증을 위해 이 군집에 두 쌍만이 존재한다고 가정하고 계산을 수행해보자. 먼저 군집에 존재할 수 있는 두 쌍의 경우의 수는 총 21개이고, 각각의 비율을 $x_1,...,x_{21}$이라고 하자.
 +
 +$$(RRXR)(RRXR) = x_1,\quad (RRXS)(RRXR) = x_2,\quad (RSXR)(RRXR) = x_3,\quad (RSXS)(RRXR) = x_4\\
 +(SSXR)(RRXR)=x_5,\quad (RSXR)(RRXS)=x_6,\quad  (RRXS)(RRXS)=x_7,\quad  (RSXR)(RSXR)=x_8\\
 +(SSXS)(RRXR)=x_9,\quad  (RSXS)(RRXS)=x_{10},\quad (SSXR)(RRXS)=x_{11},\quad (RSXS)(RSXR)=x_{12}\\
 +(SSXR)(RSXR)=x_{13},\quad (SSXS)(RRXS)=x_{14},\quad (SSXS)(RSXR)=x_{15},\quad (RSXS)(RSXS)=x_{16}\\
 +(SSXR)(RSXS)=x_{17},\quad (SSXR)(SSXR)=x_{18},\quad (SSXS)(RSXS)=x_{19},\quad (SSXS)(SSXR)=x_{20}\\
 +(SSXS)(SSXS)=x_{21}$$
 +
 +그리고 이들의 자녀 세대가 무작위 짝짓기를 한다고 가정하고, 자녀 세대에서 나올 수 있는 각 쌍의 수는 다음과 같다.
 +
 +$$
 +N_{RRXR} = (1-r)K\left[2x_1+x_2+\frac{9}{8}x_3+ \frac{3}{4}x_4+\frac{3}{8}x_6+\frac{1}{2}x_8+\frac{1}{4}x_{12}+\frac{r}{r+s}\left(x_5+x_9+\frac{1}{4}x_{13}+\frac{1}{4}x_{15}\right)\right]\\
 +N_{RRXS} = (1-r)K\left[\frac{3}{8}x_3+\frac{1}{4}x_4+\frac{1}{8}x_6+\frac{1}{2}x_8+\frac{1}{4}x_{12}+\frac{r}{r+s}\left(x_5+x_9\right)+\frac{2s+r}{4(s+r)}\left(x_{13}+x_{15}\right)\right]\\
 +N_{RSXR} = (1-r)K\left[x_2+\frac{3}{8}x_3+\frac{3}{8}x4+\frac{9}{8}x_6+2x_7+\frac{1}{2}x_8+\frac{9}{8}x_{10}+\frac{1}{2}x_{12}+\frac{1}{2}x_{16}+\frac{r}{r+s}\left(x_{11}+x{14}+\frac{1}{4}x_{15}+\frac{1}{4}x_{17}+\frac{1}{4}x_{19}+\right)\right]\\+(1-s)K\frac{r}{r+s}\left[x_5+x_{11}+\frac{1}{2}x_{13}+\frac{1}{2}x_{17}\right]\\
 +N_{RSXS} = (1-r)K\left[\frac{1}{8}x_3+\frac{1}{8}x_4+\frac{3}{8}x_6+\frac{1}{2}x_8+\frac{3}{8}x_{10}+\frac{1}{2}x_{12}+\frac{1}{2}x_{16}+\frac{s}{r+s}\left(x_{11}+x_{14}\right)+\frac{2s+r}{4(s+r)}\left(x_{13}+x_{15}+x_{17}+x_{19}\right)\right]\\+(1-s)K\left[2x_{18}+x_{20}+\frac{s}{r+s}\left(x_5+x_{11}\right)+\frac{2s+r}{2(s+r)}\left(x_{13}+x_{17}\right)\right]\\
 +N_{SSXR} = (1-r)K\left[\frac{3}{8}x_4+\frac{3}{8}x_{10}+\frac{1}{4}x_{12}+\frac{1}{2}x_{16}+\frac{r}{4(s+r)}\left(x_{17}+x_{19}\right)\right]+(1-s)K\frac{r}{r+s}\left[x_9+x_{14}+\frac{1}{2}x_{15}+\frac{1}{2}x_{19}\right]\\
 +N_{SSXS} = (1-r)K\left[\frac{1}{8}x_4+\frac{1}{8}x_{10}+\frac{1}{4}x_{12}+\frac{1}{2}x_{16}+\frac{2s+r}{4(s+r)}\left(x_{17}+x_{19}\right)\right]+(1-s)K\left[x_{10}+2x_{21}+\frac{s}{s+r}\left(x_9+x_{14}\right)+\frac{2s+r}{2(r+s)}\left(x_{15}+x_{19}\right)\right]
 +$$
 +
 +이 때 전체 쌍의 수를 $N_{tot} = N_{RRXR}+N_{RRXS}+N_{RSXR}+N_{RSXS}+N_{SSXR}+N_{SSXS}$ 이라고 하고 각 쌍의 비율을
 +
 +$$P_{RRXR} = \frac{N_{RRXR}}{N_{tot}},\enspace P_{RRXS} = \frac{N_{RRXS}}{N_{tot}},\enspace P_{RSXR} = \frac{N_{RSXR}}{N_{tot}},\enspace
 +P_{RSXS} = \frac{N_{RSXS}}{N_{tot}},\enspace P_{SSXR} = \frac{N_{SSXR}}{N_{tot}},\enspace P_{SSXS} = \frac{N_{SSXS}}{N_{tot}}$$
 +
 +이라고 한다면 자녀 세대에서 특정 두 쌍이 존재할 확률을 다음과 같이 계산할 수 있다.
 +
 +$$
 +x'_{1} = P_{RRXR}\times P_{RRXR},\quad x'_{2} = P_{RRXS}\times P_{RRXR},\quad x'_{3} = P_{RSXR}\times P_{RRXR},\quad x'_{4} = P_{RSXS}\times P_{RRXR}\\
 +x'_{5} = P_{SSXR}\times P_{RRXR},\quad x'_{6} = P_{RSXR}\times P_{RRXS},\quad x'_{7} = P_{RRXS}\times P_{RRXS},\quad x'_{8} = P_{RSXR}\times P_{RSXR}\\
 +x'_{9} = P_{SSXS}\times P_{RRXR},\quad x'_{10} = P_{RSXS}\times P_{RRXS},\quad x'_{11} = P_{SSXR}\times P_{RRXS},\quad x'_{12} = P_{RSXS}\times P_{RSXR}\\
 +x'_{13} = P_{SSXR}\times P_{RSXR},\quad x'_{14} = P_{SSXS}\times P_{RRXS},\quad x'_{15} = P_{SSXS}\times P_{RSXR},\quad x'_{16} = P_{RSXS}\times P_{RSXS}\\
 +x'_{17} = P_{SSXR}\times P_{RSXS},\quad x'_{18} = P_{SSXR}\times P_{SSXR},\quad x'_{19} = P_{SSXS}\times P_{RSXS},\quad x'_{20} = P_{SSXS}\times P_{SSXR}\\
 +x'_{21} = P_{SSXS}\times P_{SSXS}
 +$$
 +
 +이로써 자녀 세대의 쌍의 비율 ${x'}$를 부모 세대의 쌍의 비율 ${x}$들로 표현해내었다.
 +지금 우리는 돌연변이가 희귀한 경우에 대해 관심이 있기 때문에 $x_1$을 제외한 나머지 $x_i$들이 매우 작다고 가정하고 다음과 같이 ${x'}$를 $x_i$에 대해 전개할 것이다.
 +
 +$$
 +\begin{cases}
 +x'_1 = f_1(x_1,...,x_{21}) \approx \left.\frac{\partial f_{1}}{\partial x_1}\right\vert_{(1,0,...,0)} (x_1 - 1) + \cdots + \left.\frac{\partial f_{1}}{\partial x_{21}}\right\vert_{(1,0,...,0)} x_{21}\\
 +x'_2 = f_2(x_1,...,x_{21}) \approx \left.\frac{\partial f_{2}}{\partial x_1}\right\vert_{(1,0,...,0)} (x_1 - 1) + \cdots + \left.\frac{\partial f_{2}}{\partial x_{21}}\right\vert_{(1,0,...,0)} x_{21}\\
 +\qquad\qquad\cdot\\
 +\qquad\qquad\cdot\\
 +\qquad\qquad\cdot\\
 +x'_{21} = f_{21}(x_1,...,x_{21}) \approx \left.\frac{\partial f_{21}}{\partial x_1}\right\vert_{(1,0,...,0)} (x_1 - 1) + \cdots + \left.\frac{\partial f_{21}}{\partial x_{21}}\right\vert_{(1,0,...,0)} x_{21}\\
 +\end{cases}
 +$$
 +
 +이제 이 20x20 행렬의 가장 큰 고윳값을 $r$과 $s$에 따라 그리고, 고윳값이 1보다 작은 영역을 보면 다음을 얻는다.
 +{{ :진화생물학:out.png?600 |}}
 +
 +이로써 $N=2$일 때 평형 성비는 $r=0.214$가 됨을 알 수 있다.
 +
 +그리고 한 쌍이 $(RRXR)$이라고 가정하고 $x'_2,x'_3,x'_4,x'_5,x'_9$를 가지고 5x5 행렬을 써보면 이 행렬이 윗 절의
 +$$
 +\begin{pmatrix}
 +pu & 0 & \frac{1}{4N} & 0 & 0\\
 +(1-p)u & 0 & \frac{2N-1}{4N} & 0 & 0\\
 +0 & pu & \frac{1}{4N} & \frac{1}{4N} & 0\\
 +0 & (1-p)u & \frac{2N-1}{4N} & \frac{2N-1}{4N} & 1\\
 +(N-1)p & (N-1)p & \frac{N-1}{2N} & \frac{2N-1}{4N} & 0
 +\end{pmatrix}
 +
 +$$
 +
 +와 같음을 확인할 수 있다.
 ======참고문헌====== ======참고문헌======
   * W. D. Hamilton, //Extraordinary Sex Ratios//, Science **156**, 477--488 (1967).   * W. D. Hamilton, //Extraordinary Sex Ratios//, Science **156**, 477--488 (1967).
   * P. D. Taylor and M. G. Bulmer, //Local Mate Competition and the Sex Ratio//, J. Theor. Biol. **86** 409--419 (1980).   * P. D. Taylor and M. G. Bulmer, //Local Mate Competition and the Sex Ratio//, J. Theor. Biol. **86** 409--419 (1980).
  • 진화생물학/한곳_짝짓기_경쟁.txt
  • Last modified: 2023/09/05 15:46
  • by 127.0.0.1