김민재:스터디:임계현상:미완료_계산

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
김민재:스터디:임계현상:미완료_계산 [2017/07/11 19:31] minjae김민재:스터디:임계현상:미완료_계산 [2023/09/05 15:46] (current) – external edit 127.0.0.1
Line 4: Line 4:
  
 식 $(3.39)$ 식 $(3.39)$
-\begin{equation}\notag+\begin{equation}
 \begin{split} \begin{split}
-C&=n\left[\frac{1}{2}\left(\frac{Ta_{2}^{\prime}^{2}}{c}^\right){2}(2\pi)^{-d}\int d^{d}k^{\prime}(1+k^{\prime}^{2})^{-2}\right]\xi^{4-d}+l.s \\ +C &= n \left[ \frac{1}{2} \left( \frac{Ta_2^\prime}{c} \right)^2 (2\pi)^-d \int d^dk^\prime (1+{k^\prime}^2)^-2 \right] \xi^{4-d} + l.s \\ 
-&\equiv C_{0}\xi^{4-d}+l.s+&\equiv C_0\xi^{4-d} + l.s
 \end{split} \end{split}
 \end{equation} \end{equation}
Line 16: Line 16:
 \begin{equation}\notag \begin{equation}\notag
 \begin{split} \begin{split}
-\frac{C_{0}\xi^{4-d}}{\Delta C} &\approx \left(\frac{Ta_{2}^{\prime}^{2}}{c}\right)^{2}(2\pi)^{-d}\left(\frac{a_{2}^{\prime}}{c}\right)^{\frac{d}{2}-2}|T-T_{c}|^{\frac{d}{2}-2}\frac{1}{\Delta C} \\ +\frac{C_0\xi^{4-d}}{\Delta C} &\approx \left(\frac{{Ta_2^\prime}^2}{c}\right)^2 (2\pi)^{-d} \left(\frac{a_2^\prime}{c}\right)^{\frac{d}{2}-2}|T-T_c|^{\frac{d}{2}-2}\frac{1}{\Delta C} \\ 
-&=T^{2}a_{2}^{\prime}^{\frac{d}{2}}(2\pi)^{-d}a_{2}^{\prime}^{\frac{d}{2}-2}c^{-\frac{d}{2}}T_{c}^{\frac{d}{2}-2}\left|1-\frac{T}{T_{c}}\right|^{\frac{d}{2}-2}\frac{1}{\Delta C} \\ +&=T^2{a_2^\prime}^{\frac{d}{2}}(2\pi)^{-d}{a_2^\prime}^{\frac{d}{2}-2}c^{-\frac{d}{2}}T_c^{\frac{d}{2}-2} \left|1-\frac{T}{T_c}\right|^{\frac{d}{2}-2}\frac{1}{\Delta C} \\ 
-&=\frac{T^{2}a_{2}^{\prime}^{\frac{d}{2}}(2\pi)^{-d}c^{-\frac{d}{2}}T_{c}^{\frac{d}{2}-2}\frac{1}{\Delta C}}{\left|1-\frac{T}{T_{c}}\right|^{2-\frac{d}{2}}} \\ +&=\frac{T^2{a_2^\prime}^{\frac{d}{2}}(2\pi)^{-d}c^{-\frac{d}{2}}T_c^{\frac{d}{2}-2}\frac{1}{\Delta C}}{\left|1-\frac{T}{T_c}\right|^{2-\frac{d}{2}}} \\ 
-&=\left[\frac{\left\{T^{2}a_{2}^{\prime}^{\frac{d}{2}}(2\pi)^{-d}c^{-\frac{d}{2}}T_{c}^{\frac{d}{2}-2}\frac{1}{\Delta C}\right\}^{\frac{2}{4-d}}}{\left|1-\frac{T}{T_{c}}\right|}\right]^{2-\frac{d}{2}} \\ +&=\left[\frac{\left\{T^2{a_2^\prime}^{\frac{d}{2}}(2\pi)^{-d}c^{-\frac{d}{2}}T_c^{\frac{d}{2}-2}\frac{1}{\Delta C}\right\}^{\frac{2}{4-d}}}{\left|1-\frac{T}{T_c}\right|}\right]^{2-\frac{d}{2}} \\ 
-&=\left[\frac{\left\{\left(\frac{T}{T_{c}}\right)^{2}(2\pi)^{-d}\left(\frac{a_{2}^{\prime}T_{c}}{c}\right)^{\frac{d}{2}}\frac{1}{\Delta C}\right\}^{\frac{2}{4-d}}}{\left|1-\frac{T}{T_{c}}\right|}\right]^{2-\frac{d}{2}} \\ +&=\left[\frac{\left\{\left(\frac{T}{T_c}\right)^{2}(2\pi)^{-d}\left(\frac{{a_2^\prime}T_c}{c}\right)^{\frac{d}{2}}\frac{1}{\Delta C}\right\}^{\frac{2}{4-d}}}{\left|1-\frac{T}{T_c}\right|}\right]^{2-\frac{d}{2}} \\ 
-&\approx\left[\frac{\left\{(2\pi)^{-d}\left(\frac{a_{2}^{\prime}T_{c}}{c}\right)^{\frac{d}{2}}\frac{1}{\Delta C}\right\}^{\frac{2}{4-d}}}{\left|1-\frac{T}{T_{c}}\right|}\right]^{2-\frac{d}{2}}+&\approx\left[\frac{\left\{(2\pi)^{-d}\left(\frac{{a_2^\prime}T_c}{c}\right)^{\frac{d}{2}}\frac{1}{\Delta C}\right\}^{\frac{2}{4-d}}}{\left|1-\frac{T}{T_c}\right|}\right]^{2-\frac{d}{2}}
 \end{split} \end{split}
 \end{equation} \end{equation}
 +
 를 얻는다. 이제 를 얻는다. 이제
 +
 \begin{equation}\notag \begin{equation}\notag
-\zeta_{T}\equiv\left[\frac{(2\pi\xi_{0})^{-d}}{\Delta C}\right]^{\frac{2}{4-d}},\quad\xi_{0}\equiv\left(\frac{c}{a_{2}^{\prime}{T_{c}}\right)^{\frac{1}{2}}+\zeta_{T}\equiv\left[\frac{(2\pi\xi_{0})^{-d}}{\Delta C}\right]^{\frac{2}{4-d}},\quad\xi_{0}\equiv\left(\frac{c}{a_2^\prime T_{c}}\right)^{\frac{1}{2}}
 \end{equation} \end{equation}
 +
 로 정의하고 다시 적어보면 로 정의하고 다시 적어보면
 +
 \begin{equation}\notag \begin{equation}\notag
-\frac{C_{0}\xi^{4-d}}{\Delta C}\approx\left[\frac{\zeta_{T}}{\left|1-\frac{T}{T_{c}\right|}\right]^{2-\frac{d}{2}}+\frac{C_0\xi^{4-d}}{\Delta C}\approx\left[\frac{\zeta_T}{\left|1-\frac{T}{T_c\right|}\right]^{2-\frac{d}{2}}
 \end{equation} \end{equation}
 이 된다. 이 된다.
 +
 +이제 비동차 방정식
 +
 +$$\frac{dy}{dx} + P(x)y(x) = Q(x)$$
 +
 +의 특수해를 구하자. 이번에도 위와 같은 방법으로 $y(x)$를 구한다면
 +
 +\begin{align*}
 +y(x) &= y_0 - \int_0^xdx_1\left[Q(x_1)-P(x_1)y(x_1)\right] \\
 +&= y_0 - \int_0^xdx_1Q(x_1) + \int_0^xdx_1P(x_1)\left[y_0-\int_0^{x_1}dx_2\bigl\{Q(x_2)-P(x_2)y(x_2)\bigr\}\right] \\
 +&= y_0 - \int_0^xdx_1Q(x_1) + \int_0^xdx_1P(x_1)y_0 -\int_0^xdx_1P(x_1)\int_0^{x_1}dx_2Q(x_2) + \int_0^xdx_1P(x_1)\int_0^{x_1}dx_2P(x_2)\left[y_0-\int_0^{x_2}dx_3\bigl\{Q(x_3)-P(x_3)y(x_3)\bigr\}\right] + \cdots \\
 +\end{align*}
 +
 +이고 $y_0$로 묶으면 아래와 같이 정리할 수 있다.
 +\begin{align*}
 +y(x) &=\left[1 + \int_0^xdx_1P(x_1) + \int_0^xdx_1P(x_1)\int_0^{x_1}dx_2P(x_2) + \int_0^xdx_1P(x_1)\int_0^{x_1}dx_2P(x_2)\int_0^{x_2}dx_3P(x_3) + \cdots\right]y_0 \\
 +&\quad -\left[\int_0^xdx_1Q(x_1) + \int_0^xdx_1P(x_1)\int_0^{x_1}dx_2Q(x_2) + \int_0^xdx_1P(x_1)\int_0^{x_1}dx_2P(x_2)\int_0^{x_2}dx_3Q(x_3) + \cdots\right] \\
 +\end{align*}
 +
 +$y_0$로 묵인 항을 위에서 보인 증명을 사용하여 나타내고 아래의 항을 조금 더 정리하면 다음과 같이 특수해를 구할 수 있다.
 +
 +\begin{align*}
 +y(x) &= \sum_{n=0}^\infty\mathcal{T}\frac{1}{n!}\left[\int_0^xdx^\prime P(x^\prime)\right]^ny_0 \\
 +&\quad -\Biggl[\int_0^xdx_1Q(x_1) + \sum_{n=2}^\infty\Biggl\{\int_0^x\prod_{k=1}^{n-1}\left(dx_kP(x_k)\int_0^{x_k}\right)dx_nQ(x_n)\Biggr\}\Biggr]
 +\end{align*}
 +
 +동차 방정식에서 구한 해와 비동차 방정식에서 구한 특수해를 합하면 미분방정식의 일반해를 구할 수 있다.
 +\begin{align*}
 +y(x) &= \sum_{n=0}^\infty\mathcal{T}\frac{1}{n!}\left[(-1)^n\int_0^xdx^\prime P(x^\prime)+\int_0^xdx^\prime P(x^\prime)\right]y_0 \\
 +&\quad + \left[\int_0^xdx_1Q(x_1) + \sum_{n=2}^\infty\Bigl\{\int_0^x\prod_{k=1}^{n-1}\left(dx_kP(x_k)\int_0^x\right)\Bigr\}dx_nQ(x_n)\right] \\
 +&= \sum_0^\infty\mathcal{T}\left[\frac{1}{(2n)!}\int_0^xdx^\prime P(x^\prime)\right]y_0 - \left[\int_0^xdx_1Q(x_1) + \sum_{n=2}^\infty\Bigl\{\int_0^x\prod_{k=1}^{n-1}\left(dx_kP(x_k)\int_0^x\right)\Bigr\}dx_nQ(x_n)\right]
 +\end{align*}
  • 김민재/스터디/임계현상/미완료_계산.1499770900.txt.gz
  • Last modified: 2023/09/05 15:46
  • (external edit)