Differences
This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
물리:결맞는_상태_coherent_state [2024/12/19 14:20] – minwoo | 물리:결맞는_상태_coherent_state [2024/12/25 08:50] (current) – minwoo | ||
---|---|---|---|
Line 137: | Line 137: | ||
&\ \ \to |c_0(\alpha)|^2 =e^{-|\alpha|^2} \\ | &\ \ \to |c_0(\alpha)|^2 =e^{-|\alpha|^2} \\ | ||
\\ | \\ | ||
- | & \therefore |\alpha\rangle = \sum_{n=0}^\infty c_n(\alpha) |n\rangle = \sum_{n=0}^\infty\frac{\alpha^{n}}{\sqrt{n!}}e^{-|\alpha|^2/ | + | & \therefore |\alpha\rangle = \sum_{n=0}^\infty c_n(\alpha) |n\rangle = \sum_{n=0}^\infty\frac{\alpha^{n}}{\sqrt{n!}}e^{-|\alpha|^2/ |
\end{align} | \end{align} | ||
Line 147: | Line 147: | ||
\sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}}|n\rangle &= \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} \frac{(a^{\dagger})^n}{\sqrt{n!}} |0\rangle | \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}}|n\rangle &= \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} \frac{(a^{\dagger})^n}{\sqrt{n!}} |0\rangle | ||
&= \sum_{n=0}^{\infty} \frac{(\alpha a^{\dagger})^n}{n!} |0\rangle\\ | &= \sum_{n=0}^{\infty} \frac{(\alpha a^{\dagger})^n}{n!} |0\rangle\\ | ||
- | &= e^{\alpha a^{\dagger}} |0\rangle | + | &= e^{\alpha a^{\dagger}} |0\rangle. |
\end{align} | \end{align} | ||
$\\$ | $\\$ | ||
- | \begin{align} | + | $$ |
- | \therefore |\alpha\rangle &= \sum_{n=0}^\infty c_n(\alpha) |n\rangle = \sum_{n=0}^\infty\frac{\alpha^{n}}{\sqrt{n!}}e^{-|\alpha|^2/ | + | \therefore |\alpha\rangle = \sum_{n=0}^\infty\frac{\alpha^{n}}{\sqrt{n!}}e^{-|\alpha|^2/ |
- | &= e^{-\frac{|\alpha|^2}{2}}e^{\alpha a^{\dagger}} |0\rangle | + | $$ |
- | \end{align} | ||
$$\\$$ | $$\\$$ | ||
Line 178: | Line 177: | ||
그의 분산도 $|\alpha|^2$이다. | 그의 분산도 $|\alpha|^2$이다. | ||
+ | $$\\$$ | ||
+ | 이러한 통계적 특성은, 푸아송 분포와 직접적으로 비교해서 이해할 수 있을 뿐 아니라, 결맞는 상태의 식을 이용해서도 확인이 가능하다. | ||
+ | |||
+ | 즉, $a | \alpha \rangle = \alpha | \alpha \rangle$ 이므로, 평균 개수는 다음과 같으며 | ||
+ | |||
+ | $$ | ||
+ | \langle N \rangle = \langle \alpha | a^\dagger a | \alpha \rangle = |\alpha|^2 \langle \alpha | \alpha \rangle = |\alpha|^2. | ||
+ | $$ | ||
+ | |||
+ | 표준편차 $\Delta N = \sqrt{\langle N ^2\rangle | ||
+ | |||
+ | \begin{align} | ||
+ | \langle N^2 \rangle &= \langle \alpha | a^\dagger a aa^\dagger | \alpha \rangle | ||
+ | = |\alpha|^2 \langle \alpha| aa^\dagger |\alpha\rangle \\ | ||
+ | &= |\alpha|^2 \langle \alpha| (1+a^\dagger a) |\alpha\rangle = |\alpha|^2 (1+ |\alpha|^2) = |\alpha|^4 + |\alpha|^2.\\ | ||
+ | \end{align} | ||
+ | $$\\$$ | ||
+ | |||
+ | $$ | ||
+ | \therefore \Delta N = \sqrt{\langle N ^2\rangle | ||
+ | $$ | ||
+ | |||
+ | $$\\$$ | ||
===== ' | ===== ' | ||
Line 225: | Line 247: | ||
\\ | \\ | ||
- | & \sigma_x \sigma_p =\hbar^2 \left(n+\frac{1}{2}\right)^2 \ge \left( \frac{\hbar}{2} \right)^2 \quad \left(\because \ \sigma_A = \langle A^2 \rangle - \langle A \rangle ^2 \right) | + | & \sigma_x^2 \sigma_p^2 =\hbar^2 \left(n+\frac{1}{2}\right)^2 \ge \left( \frac{\hbar}{2} \right)^2 \quad \left(\because \ \sigma_A^2 = \langle A^2 \rangle - \langle A \rangle ^2 \right) |
\end{align} | \end{align} | ||
Line 244: | Line 266: | ||
{{: | {{: | ||
- | 위의 폭은 $ \sigma_x \sigma_p =\hbar^2 \left(n+\frac{1}{2}\right)^2 \ge \left( \frac{\hbar}{2} \right)^2 $의 불확정성에 의한 것이다. | + | 위의 폭은 $ \sigma_x^2 \sigma_p^2 =\hbar^2 \left(n+\frac{1}{2}\right)^2 \ge \left( \frac{\hbar}{2} \right)^2 $의 불확정성에 의한 것이다. |
==== ' | ==== ' | ||
Line 255: | Line 277: | ||
\hat{p}=-i\sqrt{\frac{\hbar m\omega}{2}}(a-a^{\dagger}) ,\\ | \hat{p}=-i\sqrt{\frac{\hbar m\omega}{2}}(a-a^{\dagger}) ,\\ | ||
- | \langle\alpha| x |\alpha\rangle=\sqrt{\frac{\hbar}{2m \omega}}\left(\ | + | \langle\alpha| x |\alpha\rangle=\sqrt{\frac{\hbar}{2m \omega}}\left(\ \langle\alpha| |
= \sqrt{\frac{\hbar}{2m \omega}}(\alpha^* +\alpha) \\ | = \sqrt{\frac{\hbar}{2m \omega}}(\alpha^* +\alpha) \\ | ||
\\ | \\ | ||
\langle\alpha| \hat{p} |\alpha\rangle=-i\sqrt{\frac{\hbar m\omega}{2}} | \langle\alpha| \hat{p} |\alpha\rangle=-i\sqrt{\frac{\hbar m\omega}{2}} | ||
- | \left(\ | + | \left(\ \langle\alpha| |
=-i\sqrt{\frac{\hbar m\omega}{2}}(-\alpha^*+\alpha)$$ | =-i\sqrt{\frac{\hbar m\omega}{2}}(-\alpha^*+\alpha)$$ | ||
Line 283: | Line 305: | ||
\\ | \\ | ||
- | & \sigma_x \sigma_p =(\frac{\hbar}{2m\omega})(\frac{\hbar m\omega}{2})=\left(\frac{\hbar}{2}\right)^2 | + | & \sigma_x^2 \sigma_p^2 =(\frac{\hbar}{2m\omega})(\frac{\hbar m\omega}{2})=\left(\frac{\hbar}{2}\right)^2 |
\end{align} | \end{align} | ||
Line 313: | Line 335: | ||
$$|\alpha\rangle = \sum_{n=0}^\infty c_n(\alpha) |n\rangle = \sum_{n=0}^\infty\frac{\alpha^{n}}{\sqrt{n!}}e^{-|\alpha|^2/ | $$|\alpha\rangle = \sum_{n=0}^\infty c_n(\alpha) |n\rangle = \sum_{n=0}^\infty\frac{\alpha^{n}}{\sqrt{n!}}e^{-|\alpha|^2/ | ||
- | = \sum_{n=0}^\infty\frac{\alpha^{n}}{\sqrt{n!}}e^{-\alpha^* \alpha/ | + | = \sum_{n=0}^\infty \frac{\alpha^{n}}{\sqrt{n!}}e^{-\alpha^* \alpha/ |
' | ' | ||
Line 321: | Line 343: | ||
= & | = & | ||
= & | = & | ||
- | = & | + | = &e^{-i\omega t/2 }\sum_{n=0}^\infty |
- | = &|\alpha e^{-i\omega t }\rangle | + | = &e^{-i\omega t/2 }|\alpha e^{-i\omega t }\rangle |
\end{align} | \end{align} | ||
$$ \\ $$ | $$ \\ $$ | ||
- | 즉, $e^{-iHt/ | + | 즉, $e^{-iHt/ |
$$ \\ $$ | $$ \\ $$ | ||
Line 341: | Line 363: | ||
$$ \\ $$ | $$ \\ $$ | ||
+ | 더 일반적으로 기술하기 위해서, 실수 $\theta$에 대하여 $\hat{U}(\theta)=e^{-i\theta N}$을 결맞는 상태인 $|\alpha\rangle$에 걸어보자. 이때 $N=a^\dagger a$는 앞서 살펴본 ' | ||
+ | |||
+ | $|\alpha \rangle$은 $|n \rangle$의 선형결합으로 표현 되므로, 우선 $\hat{U}(\theta)|n \rangle$를 풀어보면 다음과 같다. | ||
+ | |||
+ | \begin{align} | ||
+ | \hat{U}(\theta) | n \rangle &= e^{-i\theta N}| n \rangle \\ | ||
+ | &= \left(1+ (-i\theta N) + \frac{(-i\theta N)^2}{2!} + ... \right)| n \rangle \\ | ||
+ | &= \left(1+ (-i\theta n) + \frac{(-i\theta)^2 n^2}{2!} + ... \right)| n \rangle\\ | ||
+ | &= e^{-i\theta n }| n \rangle. | ||
+ | \end{align} | ||
+ | |||
+ | 따라서, 결맞는 상태 $|\alpha \rangle =\sum_{n=0}^\infty\frac{\alpha^{n}}{\sqrt{n!}}e^{-\frac{|\alpha|^2}{2}}|n\rangle $에 $\hat{U}(\theta)$를 걸어주면: | ||
+ | |||
+ | $$ | ||
+ | \hat{U}(\theta) | \alpha\rangle = e^{-\frac{|\alpha|^2}{2}}\sum_{n=0}^\infty \frac{(\alpha e^{-i\theta})^n}{\sqrt{n!}} |n\rangle = |\alpha e^{-i\theta} \rangle. | ||
+ | |||
+ | $$ | ||
+ | |||
+ | 따라서, 결맞는 상태 $|\alpha\rangle $에 $\theta$가 실수인 $e^{-i\theta N}$의 연산자를 걸어주면, | ||
+ | |||
+ | |||
+ | $$ \\ $$ | ||
+ | |||
===== 참고 문헌 ===== | ===== 참고 문헌 ===== | ||
- | Hitoshi Murayama, Jan27 151 Coherent state, QFT on 1D lattice, 2021. (lecture of Prof. Hitoshi Murayama) | + | * Hitoshi Murayama, Jan27 151 Coherent state, QFT on 1D lattice, 2021. (lecture of Prof. Hitoshi Murayama) |
+ | * Lancaster and Blundell, Quantum field theory for the gifted amateur, 2014. |