Differences
This shows you the differences between two versions of the page.
| Both sides previous revision Previous revision Next revision | Previous revision | ||
| 물리:결맞는_상태_coherent_state [2024/12/19 14:40] – minwoo | 물리:결맞는_상태_coherent_state [2024/12/25 08:50] (current) – minwoo | ||
|---|---|---|---|
| Line 184: | Line 184: | ||
| $$ | $$ | ||
| - | \langle N \rangle = \langle \alpha | a^\dagger a | \alpha \rangle = |\alpha|^2 \langle \alpha | + | \langle N \rangle = \langle \alpha | a^\dagger a | \alpha \rangle = |\alpha|^2 \langle \alpha | \alpha \rangle = |\alpha|^2. |
| $$ | $$ | ||
| - | 표준편차 $\Delta | + | 표준편차 $\Delta |
| \begin{align} | \begin{align} | ||
| Line 194: | Line 194: | ||
| &= |\alpha|^2 \langle \alpha| (1+a^\dagger a) |\alpha\rangle = |\alpha|^2 (1+ |\alpha|^2) = |\alpha|^4 + |\alpha|^2.\\ | &= |\alpha|^2 \langle \alpha| (1+a^\dagger a) |\alpha\rangle = |\alpha|^2 (1+ |\alpha|^2) = |\alpha|^4 + |\alpha|^2.\\ | ||
| \end{align} | \end{align} | ||
| + | $$\\$$ | ||
| + | |||
| + | $$ | ||
| + | \therefore \Delta N = \sqrt{\langle N ^2\rangle | ||
| + | $$ | ||
| $$\\$$ | $$\\$$ | ||
| Line 242: | Line 247: | ||
| \\ | \\ | ||
| - | & \sigma_x \sigma_p =\hbar^2 \left(n+\frac{1}{2}\right)^2 \ge \left( \frac{\hbar}{2} \right)^2 \quad \left(\because \ \sigma_A = \langle A^2 \rangle - \langle A \rangle ^2 \right) | + | & \sigma_x^2 \sigma_p^2 =\hbar^2 \left(n+\frac{1}{2}\right)^2 \ge \left( \frac{\hbar}{2} \right)^2 \quad \left(\because \ \sigma_A^2 = \langle A^2 \rangle - \langle A \rangle ^2 \right) |
| \end{align} | \end{align} | ||
| Line 261: | Line 266: | ||
| {{: | {{: | ||
| - | 위의 폭은 $ \sigma_x \sigma_p =\hbar^2 \left(n+\frac{1}{2}\right)^2 \ge \left( \frac{\hbar}{2} \right)^2 $의 불확정성에 의한 것이다. | + | 위의 폭은 $ \sigma_x^2 \sigma_p^2 =\hbar^2 \left(n+\frac{1}{2}\right)^2 \ge \left( \frac{\hbar}{2} \right)^2 $의 불확정성에 의한 것이다. |
| ==== ' | ==== ' | ||
| Line 272: | Line 277: | ||
| \hat{p}=-i\sqrt{\frac{\hbar m\omega}{2}}(a-a^{\dagger}) ,\\ | \hat{p}=-i\sqrt{\frac{\hbar m\omega}{2}}(a-a^{\dagger}) ,\\ | ||
| - | \langle\alpha| x |\alpha\rangle=\sqrt{\frac{\hbar}{2m \omega}}\left(\ | + | \langle\alpha| x |\alpha\rangle=\sqrt{\frac{\hbar}{2m \omega}}\left(\ \langle\alpha| |
| = \sqrt{\frac{\hbar}{2m \omega}}(\alpha^* +\alpha) \\ | = \sqrt{\frac{\hbar}{2m \omega}}(\alpha^* +\alpha) \\ | ||
| \\ | \\ | ||
| \langle\alpha| \hat{p} |\alpha\rangle=-i\sqrt{\frac{\hbar m\omega}{2}} | \langle\alpha| \hat{p} |\alpha\rangle=-i\sqrt{\frac{\hbar m\omega}{2}} | ||
| - | \left(\ | + | \left(\ \langle\alpha| |
| =-i\sqrt{\frac{\hbar m\omega}{2}}(-\alpha^*+\alpha)$$ | =-i\sqrt{\frac{\hbar m\omega}{2}}(-\alpha^*+\alpha)$$ | ||
| Line 300: | Line 305: | ||
| \\ | \\ | ||
| - | & \sigma_x \sigma_p =(\frac{\hbar}{2m\omega})(\frac{\hbar m\omega}{2})=\left(\frac{\hbar}{2}\right)^2 | + | & \sigma_x^2 \sigma_p^2 =(\frac{\hbar}{2m\omega})(\frac{\hbar m\omega}{2})=\left(\frac{\hbar}{2}\right)^2 |
| \end{align} | \end{align} | ||
| Line 330: | Line 335: | ||
| $$|\alpha\rangle = \sum_{n=0}^\infty c_n(\alpha) |n\rangle = \sum_{n=0}^\infty\frac{\alpha^{n}}{\sqrt{n!}}e^{-|\alpha|^2/ | $$|\alpha\rangle = \sum_{n=0}^\infty c_n(\alpha) |n\rangle = \sum_{n=0}^\infty\frac{\alpha^{n}}{\sqrt{n!}}e^{-|\alpha|^2/ | ||
| - | = \sum_{n=0}^\infty\frac{\alpha^{n}}{\sqrt{n!}}e^{-\alpha^* \alpha/ | + | = \sum_{n=0}^\infty \frac{\alpha^{n}}{\sqrt{n!}}e^{-\alpha^* \alpha/ |
| ' | ' | ||
| Line 338: | Line 343: | ||
| = & | = & | ||
| = & | = & | ||
| - | = & | + | = &e^{-i\omega t/2 }\sum_{n=0}^\infty |
| - | = &|\alpha e^{-i\omega t }\rangle | + | = &e^{-i\omega t/2 }|\alpha e^{-i\omega t }\rangle |
| \end{align} | \end{align} | ||
| $$ \\ $$ | $$ \\ $$ | ||
| - | 즉, $e^{-iHt/ | + | 즉, $e^{-iHt/ |
| $$ \\ $$ | $$ \\ $$ | ||
| Line 358: | Line 363: | ||
| $$ \\ $$ | $$ \\ $$ | ||
| + | 더 일반적으로 기술하기 위해서, 실수 $\theta$에 대하여 $\hat{U}(\theta)=e^{-i\theta N}$을 결맞는 상태인 $|\alpha\rangle$에 걸어보자. 이때 $N=a^\dagger a$는 앞서 살펴본 ' | ||
| + | |||
| + | $|\alpha \rangle$은 $|n \rangle$의 선형결합으로 표현 되므로, 우선 $\hat{U}(\theta)|n \rangle$를 풀어보면 다음과 같다. | ||
| + | |||
| + | \begin{align} | ||
| + | \hat{U}(\theta) | n \rangle &= e^{-i\theta N}| n \rangle \\ | ||
| + | &= \left(1+ (-i\theta N) + \frac{(-i\theta N)^2}{2!} + ... \right)| n \rangle \\ | ||
| + | &= \left(1+ (-i\theta n) + \frac{(-i\theta)^2 n^2}{2!} + ... \right)| n \rangle\\ | ||
| + | &= e^{-i\theta n }| n \rangle. | ||
| + | \end{align} | ||
| + | |||
| + | 따라서, 결맞는 상태 $|\alpha \rangle =\sum_{n=0}^\infty\frac{\alpha^{n}}{\sqrt{n!}}e^{-\frac{|\alpha|^2}{2}}|n\rangle $에 $\hat{U}(\theta)$를 걸어주면: | ||
| + | |||
| + | $$ | ||
| + | \hat{U}(\theta) | \alpha\rangle = e^{-\frac{|\alpha|^2}{2}}\sum_{n=0}^\infty \frac{(\alpha e^{-i\theta})^n}{\sqrt{n!}} |n\rangle = |\alpha e^{-i\theta} \rangle. | ||
| + | |||
| + | $$ | ||
| + | |||
| + | 따라서, 결맞는 상태 $|\alpha\rangle $에 $\theta$가 실수인 $e^{-i\theta N}$의 연산자를 걸어주면, | ||
| + | |||
| + | |||
| + | $$ \\ $$ | ||
| + | |||
| ===== 참고 문헌 ===== | ===== 참고 문헌 ===== | ||
| * Hitoshi Murayama, Jan27 151 Coherent state, QFT on 1D lattice, 2021. (lecture of Prof. Hitoshi Murayama) | * Hitoshi Murayama, Jan27 151 Coherent state, QFT on 1D lattice, 2021. (lecture of Prof. Hitoshi Murayama) | ||
| * Lancaster and Blundell, Quantum field theory for the gifted amateur, 2014. | * Lancaster and Blundell, Quantum field theory for the gifted amateur, 2014. | ||