Differences
This shows you the differences between two versions of the page.
| Both sides previous revision Previous revision Next revision | Previous revision | ||
| 물리:구면_p-스핀_유리_모형 [2023/01/04 15:36] – [스핀에 대한 대각합] jiwon | 물리:구면_p-스핀_유리_모형 [2023/09/05 15:46] (current) – external edit 127.0.0.1 | ||
|---|---|---|---|
| Line 22: | Line 22: | ||
| \begin{align*} | \begin{align*} | ||
| \overline{Z^n}=& | \overline{Z^n}=& | ||
| - | & | + | & |
| \end{align*} | \end{align*} | ||
| 와 같이 쓸 수 있다. | 와 같이 쓸 수 있다. | ||
| Line 39: | Line 39: | ||
| \approx& | \approx& | ||
| e^{\beta H_{\text{eff}}}\left(1-\frac{(\beta J)^2}{8N}p(p-1)\sum_{\alpha\beta}q_{\alpha\beta}^{p-2}(\sigma^\alpha\sigma^\beta)^2+\mathcal O(N^{-2})\right)\right]^N\\ | e^{\beta H_{\text{eff}}}\left(1-\frac{(\beta J)^2}{8N}p(p-1)\sum_{\alpha\beta}q_{\alpha\beta}^{p-2}(\sigma^\alpha\sigma^\beta)^2+\mathcal O(N^{-2})\right)\right]^N\\ | ||
| - | & | + | =& |
| e^{\beta H_{\text{eff}}}-\frac{(\beta J)^2}{8N}p(p-1)\sum_{\alpha\beta}q_{\alpha\beta}^{p-2}\int_{-\infty}^{+\infty}\prod_{\alpha}d\sigma^\alpha | e^{\beta H_{\text{eff}}}-\frac{(\beta J)^2}{8N}p(p-1)\sum_{\alpha\beta}q_{\alpha\beta}^{p-2}\int_{-\infty}^{+\infty}\prod_{\alpha}d\sigma^\alpha | ||
| e^{\beta H_{\text{eff}}}(\sigma^\alpha\sigma^\beta)^2\right\}\right]\\ | e^{\beta H_{\text{eff}}}(\sigma^\alpha\sigma^\beta)^2\right\}\right]\\ | ||
| Line 49: | Line 49: | ||
| 이고, 지수 위의 첫 번째 항은 가우스 적분 | 이고, 지수 위의 첫 번째 항은 가우스 적분 | ||
| $$\int\prod_\alpha d\sigma_\alpha\exp\left[-\frac12\vec\sigma\cdot\mathbf A\cdot\vec\sigma+\mathbf J\cdot\vec\sigma\right] = \sqrt{\frac{(2\pi)^n}{\det\Lambda}}\exp\left[-\frac12\mathbf J\cdot \mathbf A^{-1}\cdot\mathbf J\right]$$ | $$\int\prod_\alpha d\sigma_\alpha\exp\left[-\frac12\vec\sigma\cdot\mathbf A\cdot\vec\sigma+\mathbf J\cdot\vec\sigma\right] = \sqrt{\frac{(2\pi)^n}{\det\Lambda}}\exp\left[-\frac12\mathbf J\cdot \mathbf A^{-1}\cdot\mathbf J\right]$$ | ||
| - | 를 이용해 | + | 를 이용해 |
| \begin{align*} | \begin{align*} | ||
| & | & | ||
| e^{\beta H_{\text{eff}}}\right)=\log\left(\int_{-\infty}^{+\infty}\prod_{\alpha}d\sigma^\alpha | e^{\beta H_{\text{eff}}}\right)=\log\left(\int_{-\infty}^{+\infty}\prod_{\alpha}d\sigma^\alpha | ||
| \exp\left[\frac12\sum_{\alpha\beta}\lambda_{\alpha\beta}\sigma^\alpha\sigma^\beta+\beta h\sum_{\alpha}\sigma^\alpha\right]\right)\\ | \exp\left[\frac12\sum_{\alpha\beta}\lambda_{\alpha\beta}\sigma^\alpha\sigma^\beta+\beta h\sum_{\alpha}\sigma^\alpha\right]\right)\\ | ||
| - | =&n\log(2\pi)-\log\det(-\tilde\Lambda)-\frac{(\beta | + | =&\frac n2\log(2\pi)-\frac12\log\det(-\tilde\Lambda)+\frac{(\beta |
| \end{align*} | \end{align*} | ||
| 여기서 $(\tilde\Lambda)_{\alpha\beta}=\lambda_{\alpha\beta}$이다. 따라서 분배함수는 | 여기서 $(\tilde\Lambda)_{\alpha\beta}=\lambda_{\alpha\beta}$이다. 따라서 분배함수는 | ||
| Line 62: | Line 62: | ||
| $$ | $$ | ||
| 가 된다. 여기서 | 가 된다. 여기서 | ||
| - | $$G[\mathbf q,\lambda] = -\frac 12\sum_{\alpha\beta}\lambda_{\alpha\beta}q_{\alpha\beta}+\frac{(\beta J)^2}4\sum_{\alpha\beta}q_{\alpha\beta}^p-n\log(2\pi)-\frac{(\beta J)^2}{8N}p(p-1)\sum_{\alpha\beta}q_{\alpha\beta}^{p-2}\left\langle(\sigma^\alpha\sigma^\beta)^2\right\rangle+\log\det(-\tilde\Lambda)+\frac{(\beta | + | $$G[\mathbf q,\lambda] = \frac 12\sum_{\alpha\beta}\lambda_{\alpha\beta}q_{\alpha\beta}-\frac{(\beta J)^2}2\sum_{\alpha\beta}q_{\alpha\beta}^p-\frac n2\log(2\pi)+\frac{(\beta J)^2}{8N}p(p-1)\sum_{\alpha\beta}q_{\alpha\beta}^{p-2}\left\langle(\sigma^\alpha\sigma^\beta)^2\right\rangle+\frac12\log\det(-\tilde\Lambda)+\frac{(\beta |
| 이다. | 이다. | ||
| - | =====$\lambda$ 적분===== | + | =====$\lambda$ 적분(작성중)===== |
| + | $b = \beta h$, $\mu=b^2p/ | ||
| - | =====$q$ 적분===== | + | $(\tilde b^2)_{\alpha\beta} = b^2$: $n\times n$ 행렬 |
| + | \begin{align*} | ||
| + | \log\det(-\tilde\Lambda-\tilde b^2)=& | ||
| + | =& | ||
| + | =& | ||
| + | \approx& | ||
| + | \end{align*} | ||
| + | |||
| + | 극값 조건 | ||
| + | $$\langle\sigma^\alpha\sigma^\beta\rangle = q_{\alpha\beta}$$ | ||
| + | $$\lambda_{\alpha\beta}+b^2+(\mathbf q^{-1})_{\alpha\beta} = \mathcal O(n)$$ | ||
| + | |||
| + | 분배함수 | ||
| + | $$\overline{Z^n} = e^{nS(\infty)}\int\prod_{\alpha< | ||
| + | |||
| + | $$G_0[\mathbf q] = -\frac\mu{2p}\sum_{\alpha\beta}q_{\alpha\beta}^p-\frac{b^2}2\sum_{\alpha\beta}q_{\alpha\beta}-\frac12\log\det\mathbf q+\frac{b^4}4\left(\sum_{\alpha\beta}q_{\alpha\beta}\right)^2$$ | ||
| + | $$G_1[\mathbf q] = \frac\mu4(p-1)\sum_{\alpha\beta}\left\langle(\sigma^\alpha\sigma^\beta)^2\right\rangle q_{\alpha\beta}^{p-2}+\log\det\mathbf q$$ | ||
| + | =====$q$ 적분(작성중)===== | ||
| + | |||
| + | 극값 조건 | ||
| + | $$\mu q_{\alpha\beta}^{p-1}+b^2+(\mathbf q^{-1})_{\alpha\beta} = 0\qquad\alpha\neq\beta$$ | ||
| + | |||
| + | 2차항까지 전개 | ||
| + | $$\delta^2G_0 = -\frac{\mu(p-1)}2\sum_{\alpha\beta}q_{\alpha\beta}^{p-2}(\delta q_{\alpha\beta})^2+\text{Tr}(\mathbf q^{-1}\delta\mathbf q)^2+b^4\left(\sum_{\alpha\beta}q_{\alpha\beta}\right)^2$$ | ||
| + | |||
| + | \begin{align*} | ||
| + | \text{Tr}(\mathbf q^{-1}\delta\mathbf q)^2=& | ||
| + | =& | ||
| + | =& | ||
| + | =& | ||
| + | =& | ||
| + | \end{align*} | ||
| + | $$\delta^2G_0 = -\frac{\mu(p-1)}2\sum_{\alpha\beta}q_{\alpha\beta}^{p-2}(\delta q_{\alpha\beta})^2+A^2\sum_{\alpha\beta}\delta q_{\alpha\beta}^2 +2AB\sum_{\alpha\beta\gamma}\delta_{\alpha\gamma}\delta_{\gamma\beta}+\left(B^2+b^4\right)\left(\sum_{\alpha\beta}q_{\alpha\beta}\right)^2$$ | ||
| + | =====복제 대칭 해===== | ||