Differences
This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
물리:구면_p-스핀_유리_모형 [2023/06/30 16:37] – [스핀에 대한 대각합] jiwon | 물리:구면_p-스핀_유리_모형 [2023/09/05 15:46] (current) – external edit 127.0.0.1 | ||
---|---|---|---|
Line 39: | Line 39: | ||
\approx& | \approx& | ||
e^{\beta H_{\text{eff}}}\left(1-\frac{(\beta J)^2}{8N}p(p-1)\sum_{\alpha\beta}q_{\alpha\beta}^{p-2}(\sigma^\alpha\sigma^\beta)^2+\mathcal O(N^{-2})\right)\right]^N\\ | e^{\beta H_{\text{eff}}}\left(1-\frac{(\beta J)^2}{8N}p(p-1)\sum_{\alpha\beta}q_{\alpha\beta}^{p-2}(\sigma^\alpha\sigma^\beta)^2+\mathcal O(N^{-2})\right)\right]^N\\ | ||
- | & | + | =& |
e^{\beta H_{\text{eff}}}-\frac{(\beta J)^2}{8N}p(p-1)\sum_{\alpha\beta}q_{\alpha\beta}^{p-2}\int_{-\infty}^{+\infty}\prod_{\alpha}d\sigma^\alpha | e^{\beta H_{\text{eff}}}-\frac{(\beta J)^2}{8N}p(p-1)\sum_{\alpha\beta}q_{\alpha\beta}^{p-2}\int_{-\infty}^{+\infty}\prod_{\alpha}d\sigma^\alpha | ||
e^{\beta H_{\text{eff}}}(\sigma^\alpha\sigma^\beta)^2\right\}\right]\\ | e^{\beta H_{\text{eff}}}(\sigma^\alpha\sigma^\beta)^2\right\}\right]\\ | ||
Line 54: | Line 54: | ||
e^{\beta H_{\text{eff}}}\right)=\log\left(\int_{-\infty}^{+\infty}\prod_{\alpha}d\sigma^\alpha | e^{\beta H_{\text{eff}}}\right)=\log\left(\int_{-\infty}^{+\infty}\prod_{\alpha}d\sigma^\alpha | ||
\exp\left[\frac12\sum_{\alpha\beta}\lambda_{\alpha\beta}\sigma^\alpha\sigma^\beta+\beta h\sum_{\alpha}\sigma^\alpha\right]\right)\\ | \exp\left[\frac12\sum_{\alpha\beta}\lambda_{\alpha\beta}\sigma^\alpha\sigma^\beta+\beta h\sum_{\alpha}\sigma^\alpha\right]\right)\\ | ||
- | =&\frac n2\log(2\pi)-\frac12\log\det(-\tilde\Lambda)-\frac{(\beta h)^2}2\sum_{\alpha\beta}(\tilde\Lambda^{-1})_{\alpha\beta} | + | =&\frac n2\log(2\pi)-\frac12\log\det(-\tilde\Lambda)+\frac{(\beta h)^2}2\sum_{\alpha\beta}(\tilde\Lambda^{-1})_{\alpha\beta} |
\end{align*} | \end{align*} | ||
여기서 $(\tilde\Lambda)_{\alpha\beta}=\lambda_{\alpha\beta}$이다. 따라서 분배함수는 | 여기서 $(\tilde\Lambda)_{\alpha\beta}=\lambda_{\alpha\beta}$이다. 따라서 분배함수는 |