Differences
This shows you the differences between two versions of the page.
| Both sides previous revision Previous revision Next revision | Previous revision | ||
| 물리:단일_입자_양자역학 [2023/11/13 12:56] – minwoo | 물리:단일_입자_양자역학 [2023/11/22 10:22] (current) – minwoo | ||
|---|---|---|---|
| Line 8: | Line 8: | ||
| 우선 '빛 보다 빠른 입자' | 우선 '빛 보다 빠른 입자' | ||
| - | {{:물리:그림_8.2_no_comment_.png?300|}} | + | {{:물리:lightcone1.png?250|}} |
| 즉, 특수상대성 이론에 위배되지 않는 (허용되는) 경로(time-like라고 부른다)는 원뿔의 안쪽에 해당하며 다음을 만족하는 것이다. ($c=1$로 두었다.) | 즉, 특수상대성 이론에 위배되지 않는 (허용되는) 경로(time-like라고 부른다)는 원뿔의 안쪽에 해당하며 다음을 만족하는 것이다. ($c=1$로 두었다.) | ||
| Line 125: | Line 125: | ||
| $$ | $$ | ||
| - | + | {{:물리:fig_a.png?250|}} | |
| - | {{:물리:그림_8.3_a_.png?250|}} | + | |
| (허수축이 $\pm im$에서 잘린(cut) 이유는, 시간 연산자(time operator)의 고유값에 해당하는 $e^{-iE_pt}$의 지수는 허수이기 때문이다. | (허수축이 $\pm im$에서 잘린(cut) 이유는, 시간 연산자(time operator)의 고유값에 해당하는 $e^{-iE_pt}$의 지수는 허수이기 때문이다. | ||
| Line 146: | Line 145: | ||
| 이때, 다음의 그림의 닫힌 곡선 안에서는 특이점이 존재하지 않는다. | 이때, 다음의 그림의 닫힌 곡선 안에서는 특이점이 존재하지 않는다. | ||
| - | {{:물리:그림_8.3_b_.png?250|}} | + | {{:물리:fig_b.png?250|}} |
| 따라서 우리의 적분을 반원 위쪽을 지나는 경로에 대한 적분으로 바꾸는 것이 가능하다. | 따라서 우리의 적분을 반원 위쪽을 지나는 경로에 대한 적분으로 바꾸는 것이 가능하다. | ||
| Line 156: | Line 155: | ||
| 따라서, ' | 따라서, ' | ||
| - | {{:물리:그림_8.3_c_.png?250|}} | + | {{:물리:fig_c.png?250|}} |
| (' | (' | ||
| Line 224: | Line 223: | ||
| & = \frac{-i}{(2\pi)^2|\boldsymbol{x}|}\left[\int^\infty _{-\infty } d|\boldsymbol{p} | \ |\boldsymbol{p}| e^{-it\sqrt{(a^2+b^2+2iab) + m^2}} \ | & = \frac{-i}{(2\pi)^2|\boldsymbol{x}|}\left[\int^\infty _{-\infty } d|\boldsymbol{p} | \ |\boldsymbol{p}| e^{-it\sqrt{(a^2+b^2+2iab) + m^2}} \ | ||
| e^{i|\boldsymbol{p}||\boldsymbol{x}|} \right] \\ | e^{i|\boldsymbol{p}||\boldsymbol{x}|} \right] \\ | ||
| - | + | ||
| - | \bigg( & = \frac{-i}{(2\pi)^2|\boldsymbol{x}|}\left[\int^\infty _{-\infty } d|\boldsymbol{p} |\ |\boldsymbol{p}| | + | |
| - | e^{ia|\boldsymbol{x}|-b|\boldsymbol{x}|} \ e^{-it\sqrt{(a^2+b^2+2iab) + m^2}} \right] \\ | + | |
| - | + | ||
| - | & = \frac{-i}{(2\pi)^2|\boldsymbol{x}|}\left[\int^\infty _{-\infty } d(a+ib)\ e^{ia|\boldsymbol{x}| }\ (a+ib) | + | |
| - | | + | |
| \end{align} | \end{align} | ||
| $$ | $$ | ||
| Line 241: | Line 235: | ||
| 복소 평면 상에서 $a<0, \ b>0$인 영역과 $a>0, \ b>0$인 각각의 영역에서 $a,b$가 증가할 때 (점점 큰 반지름 $\sqrt{a^2+b^2}$을 갖는 반원 위의 경로에서) | 복소 평면 상에서 $a<0, \ b>0$인 영역과 $a>0, \ b>0$인 각각의 영역에서 $a,b$가 증가할 때 (점점 큰 반지름 $\sqrt{a^2+b^2}$을 갖는 반원 위의 경로에서) | ||
| - | $(a+ib) | + | $(a+ib) e^{-it\sqrt{(a^2+b^2+m^2)+i(2ab)}}$이 어떠한 경향성을 보이는지 확인하자. |
| $$ \\ $$ | $$ \\ $$ | ||
| Line 416: | Line 410: | ||
| 1. Tom Lancaster and Stephen J. Blundell, Quantum Field Theory for the Gifted Amateur, 2014. | 1. Tom Lancaster and Stephen J. Blundell, Quantum Field Theory for the Gifted Amateur, 2014. | ||
| + | |||
| + | 2. Jack Gunion and U.C. Davis, Class Notes for Quantum Field Theory: Section I. | ||
| + | |||