Differences
This shows you the differences between two versions of the page.
| Both sides previous revision Previous revision Next revision | Previous revision | ||
| 물리:무작위_에너지_모형 [2026/02/14 14:51] – [복제 방법을 통한 계산] admin | 물리:무작위_에너지_모형 [2026/02/14 15:02] (current) – [복제 방법을 통한 계산] admin | ||
|---|---|---|---|
| Line 351: | Line 351: | ||
| 다음으로 $n\to 0$의 극한에서 $Z^n$은 $1$이 될 것이므로 위 표현의 분모로 넣어준다: | 다음으로 $n\to 0$의 극한에서 $Z^n$은 $1$이 될 것이므로 위 표현의 분모로 넣어준다: | ||
| $$Y_N \approx \lim_{n\to 0} \frac{1}{n(n-1)} \sum_{a\neq b} \left[ \frac{ \sum_{i_1, \ldots, i_n} \exp \left( -\beta E_{i_1} - \ldots -\beta E_{i_n} \right) \mathbb{I}\left( i_a = i_b \right)}{\sum_{i_1, | $$Y_N \approx \lim_{n\to 0} \frac{1}{n(n-1)} \sum_{a\neq b} \left[ \frac{ \sum_{i_1, \ldots, i_n} \exp \left( -\beta E_{i_1} - \ldots -\beta E_{i_n} \right) \mathbb{I}\left( i_a = i_b \right)}{\sum_{i_1, | ||
| + | 그러면 $\left[\cdots \right]$ 안의 표현식은 $\mathbb{I}(i_a=i_b) = Q_{ab}$를 평균한 값으로 해석할 수 있다. 이 값이 $\beta> | ||
| + | $$\mathbb{E}Y_N \approx \lim_{n\to 0} \frac{n(x^\ast-1)}{n(n-1)} = 1-x^\ast = | ||
| + | \left\{ \begin{array}{ll} | ||
| + | 1- \frac{\beta_c}{\beta} & \text{ if }\beta> | ||
| + | 0 & \text{ otherwise.} | ||
| + | \end{array}\right.$$ | ||
| + | |||
| =====스핀 모형과의 관계===== | =====스핀 모형과의 관계===== | ||