Differences
This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
물리:요르단-위그너_변환_jordan-wigner_transformation [2024/09/08 17:19] – minwoo | 물리:요르단-위그너_변환_jordan-wigner_transformation [2024/09/10 12:58] (current) – minwoo | ||
---|---|---|---|
Line 249: | Line 249: | ||
처음에 언급한 1차원 양자 스핀 모형인 ' | 처음에 언급한 1차원 양자 스핀 모형인 ' | ||
- | 우선, 기존의 | + | 우선, 기존의 |
$$ | $$ | ||
\hat{H} = \sum_{i=1}^N g_i \hat{\sigma}^z_i - \sum_{i=1}^N (J_x \hat{\sigma}^x_{i} \hat{\sigma}^x_{i+1} + J_y \hat{\sigma}^y_{i}\hat{\sigma}^y_{i+1}). | \hat{H} = \sum_{i=1}^N g_i \hat{\sigma}^z_i - \sum_{i=1}^N (J_x \hat{\sigma}^x_{i} \hat{\sigma}^x_{i+1} + J_y \hat{\sigma}^y_{i}\hat{\sigma}^y_{i+1}). | ||
Line 273: | Line 273: | ||
$$ | $$ | ||
이를 적용하면, | 이를 적용하면, | ||
- | $$ | + | |
\begin{align} | \begin{align} | ||
& \sum_{i=1}^N (J_x \hat{\sigma}^x_{i} \hat{\sigma}^x_{i+1} + J_y \hat{\sigma}^y_{i}\hat{\sigma}^y_{i+1})\\ | & \sum_{i=1}^N (J_x \hat{\sigma}^x_{i} \hat{\sigma}^x_{i+1} + J_y \hat{\sigma}^y_{i}\hat{\sigma}^y_{i+1})\\ | ||
Line 279: | Line 279: | ||
& | & | ||
- | & | + | & |
- | &\qquad \quad +(J_x-J_y)(\hat{\sigma}_{j+1}^+\hat{\sigma}_j^+ +\hat{\sigma}_{j+1}^-\hat{\sigma}_j^-)\big].\\ | + | &\qquad \quad +(J_x-J_y)\left(\hat{\sigma}_j^+\hat{\sigma}_{j+1}^+ +\hat{\sigma}_j^-\hat{\sigma}_{j+1}^-\right)\Big].\\ |
\end{align} | \end{align} | ||
- | $$ | ||
위의 식에 요르단-위그너 변환을 아래와 같이 적용해보자. | 위의 식에 요르단-위그너 변환을 아래와 같이 적용해보자. | ||
- | $$ | + | |
\begin{align} | \begin{align} | ||
- | & | + | & \hat{\sigma}_j^- |
- | &= \hat{f}_{j+1}^\dagger e^{i\pi \sum_{l< | + | &=\hat{f}_j e^{-i\pi \sum_{l< |
- | &= \hat{f}_{j+1}^\dagger e^{i\pi n_j}\hat{f}_j=\hat{f}_{j+1}^\dagger \hat{f}_j, | + | & |
+ | &\\ | ||
+ | & \hat{\sigma}_j^+ \hat{\sigma}_{j+1}^- \\ | ||
+ | & | ||
+ | & | ||
+ | &\\ | ||
+ | & \hat{\sigma}_j^+ \hat{\sigma}_{j+1}^+\\ | ||
+ | & | ||
+ | & | ||
+ | &\\ | ||
+ | & \hat{\sigma}_j^- \hat{\sigma}_{j+1}^-\\ | ||
+ | & | ||
+ | &= \hat{f}_{j}\hat{f}_{j+1} e^{-i\pi n_j} =-\hat{f}_{j} \hat{f}_{j+1}. | ||
+ | \end{align} | ||
- | \\ | ||
- | \\ | ||
- | & | ||
- | &= \hat{f}_{j+1}^\dagger e^{i\pi \sum_{l< | ||
- | &= \hat{f}_{j+1}^\dagger e^{i\pi n_j}\hat{f}_j^\dagger=\hat{f}_{j+1}^\dagger \hat{f}_j^\dagger. | ||
- | \end{align} | ||
- | $$ | ||
위의 두 번째 결과에서는 정수 $m$에 대해 $e^{2\pi i m}=1$을 사용했다. | 위의 두 번째 결과에서는 정수 $m$에 대해 $e^{2\pi i m}=1$을 사용했다. | ||
$\\$ | $\\$ | ||
- | 따라서, | + | 따라서, |
- | $$ | ||
\begin{align} | \begin{align} | ||
\hat{H}& | \hat{H}& | ||
- | -\sum_{j=1}^{N-1} (J_x + J_y)\left(\hat{f}_{j+1}^\dagger \hat{f}_j+\hat{f}_{j+1} \hat{f}_j^\dagger \right) \\ | + | -\sum_{j=1}^{N-1} (J_x + J_y)\left(-\hat{f}_j\hat{f}_{j+1}^\dagger |
- | & -\sum_{j=1}^{N-1} (J_x-J_y)\left(\hat{f}_{j+1}^\dagger \hat{f}_j^\dagger+\hat{f}_{j+1}\hat{f}_j\right). | + | & -\sum_{j=1}^{N-1} (J_x-J_y)\left(\hat{f}_j^\dagger |
+ | |||
+ | &=-\sum_{i=1}^N g_i (1-2\hat{f}_j^\dagger \hat{f}_j) | ||
+ | |||
+ | -\sum_{j=1}^{N-1} (J_x + J_y)\left(\hat{f}_j^\dagger \hat{f}_{j+1} + \hat{f}_{j+1}^\dagger\hat{f}_j | ||
+ | & -\sum_{j=1}^{N-1} (J_x-J_y)\left(\hat{f}_j^\dagger \hat{f}_{j+1}^\dagger+\hat{f}_{j+1}\hat{f}_j\right). | ||
\end{align} | \end{align} | ||
- | $$ | + | 위에서 마지막 식에 도달할 때는 anticommutation relation을 사용하였다. |
- | (편의상, 주기적 경계 조건(periodic boundary condtiion)이 아닌 열린 경계 조건(open boudnary condition)을사용함으로써 두 번째와 세 번째 항의 합은 $j=N$이 아닌 $j=N-1$이다.) | + | |
+ | (편의상, 주기적 경계 조건(periodic boundary condtiion)이 아닌 열린 경계 조건(open boudnary condition)을 사용함으로써 두 번째와 세 번째 항의 합은 $j=N$이 아닌 $j=N-1$이다.) | ||
$\\$ | $\\$ | ||
Line 326: | Line 337: | ||
$$ | $$ | ||
- | 이를 아래와 같이 풀이하여 확인해보자. | + | 이를 아래와 같이 풀이하여 |
$$ | $$ | ||
\hat{H}(t) = i \sum_{j=1}^N g_j(t)\{\hat{f}_j^\dagger + \hat{f}_j\}\{i(\hat{f}_j^\dagger - \hat{f}_j)\}\\ | \hat{H}(t) = i \sum_{j=1}^N g_j(t)\{\hat{f}_j^\dagger + \hat{f}_j\}\{i(\hat{f}_j^\dagger - \hat{f}_j)\}\\ | ||
Line 350: | Line 361: | ||
\\ | \\ | ||
\to\ | \to\ | ||
- | \hat{H}(t) = - \sum_{j=1}^N g_j(t)\Big[ 1-2\hat{f}_{j}^\dagger \hat{f}_{j} | + | \hat{H}(t) = - \sum_{j=1}^N g_j(t)\left( 1-2\hat{f}_{j}^\dagger \hat{f}_{j} \right) |
\\ | \\ | ||
- | - \sum_{j=1}^{N-1}\Big[ | + | -\sum_{j=1}^{N-1} |
- | J_x\{\hat{f}_{j}^\dagger \hat{f}_{j+1}^\dagger | + | -\sum_{j=1}^{N-1} (J_x-J_y)\left(\hat{f}_j^\dagger \hat{f}_{j+1}^\dagger+\hat{f}_{j+1}\hat{f}_j\right). |
- | -J_y \{\hat{f}_{j}^\dagger \hat{f}_{j+1}^\dagger | + | |
$$ | $$ | ||
+ | |||
+ | 즉, 앞서 본 Majorana fermion의 표현식이 실제로 원래의 식을 준다는 것을 확인하였다. | ||
+ | |||
====== 참고 문헌 ====== | ====== 참고 문헌 ====== |