물리:요르단-위그너_변환_jordan-wigner_transformation

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
물리:요르단-위그너_변환_jordan-wigner_transformation [2024/09/08 17:49] minwoo물리:요르단-위그너_변환_jordan-wigner_transformation [2024/09/10 12:58] (current) minwoo
Line 249: Line 249:
 처음에 언급한 1차원 양자 스핀 모형인 '가로장이 걸려있는 XY 스핀 사슬 (XY spin chain in a transverse field)'에 요르단-위그너 변환을 적용해보도록 하자. 처음에 언급한 1차원 양자 스핀 모형인 '가로장이 걸려있는 XY 스핀 사슬 (XY spin chain in a transverse field)'에 요르단-위그너 변환을 적용해보도록 하자.
  
-우선, 기존의 Hamiltonian은 다음과 같다.+우선, 기존의 해밀토니안은 다음과 같다.
 $$ $$
 \hat{H} =  \sum_{i=1}^N g_i \hat{\sigma}^z_i - \sum_{i=1}^N (J_x \hat{\sigma}^x_{i} \hat{\sigma}^x_{i+1} + J_y \hat{\sigma}^y_{i}\hat{\sigma}^y_{i+1}). \hat{H} =  \sum_{i=1}^N g_i \hat{\sigma}^z_i - \sum_{i=1}^N (J_x \hat{\sigma}^x_{i} \hat{\sigma}^x_{i+1} + J_y \hat{\sigma}^y_{i}\hat{\sigma}^y_{i+1}).
Line 279: Line 279:
 &=\sum_{j=1}^N \left[J_x  (\hat{\sigma}_j^+ + \hat{\sigma}_j^-) (\hat{\sigma}_{j+1}^+ + \hat{\sigma}_{j+1}^-) - J_y (\hat{\sigma}_j^+ - \hat{\sigma}_j^-)(\hat{\sigma}_{j+1}^+ - \hat{\sigma}_{j+1}^-)\right]\\ &=\sum_{j=1}^N \left[J_x  (\hat{\sigma}_j^+ + \hat{\sigma}_j^-) (\hat{\sigma}_{j+1}^+ + \hat{\sigma}_{j+1}^-) - J_y (\hat{\sigma}_j^+ - \hat{\sigma}_j^-)(\hat{\sigma}_{j+1}^+ - \hat{\sigma}_{j+1}^-)\right]\\
  
-&=\sum_{j=1}^N \big[(J_x + J_y)\left(\hat{\sigma}_j^-\hat{\sigma}_{j+1}^+ + \hat{\sigma}_j^+ \hat{\sigma}_{j+1}^-\right) \\ +&=\sum_{j=1}^N \Big[(J_x + J_y)\left(\hat{\sigma}_j^-\hat{\sigma}_{j+1}^+ + \hat{\sigma}_j^+ \hat{\sigma}_{j+1}^-\right) \\ 
-&\qquad \quad +(J_x-J_y)\left(\hat{\sigma}_j^+\hat{\sigma}_{j+1}^+ +\hat{\sigma}_j^-\hat{\sigma}_{j+1}^-\right)\big].\\+&\qquad \quad +(J_x-J_y)\left(\hat{\sigma}_j^+\hat{\sigma}_{j+1}^+ +\hat{\sigma}_j^-\hat{\sigma}_{j+1}^-\right)\Big].\\
  
 \end{align} \end{align}
Line 307: Line 307:
  
 $\\$ $\\$
-따라서, Hamiltonian은 다음과 같이 쓰여진다.+따라서, 해밀토니안은 다음과 같이 쓰여진다.
  
  
Line 313: Line 313:
 \hat{H}&=-\sum_{i=1}^N g_i (1-2\hat{f}_j^\dagger \hat{f}_j) \hat{H}&=-\sum_{i=1}^N g_i (1-2\hat{f}_j^\dagger \hat{f}_j)
  
--\sum_{j=1}^{N-1} (J_x + J_y)\left(\hat{f}_j^\dagger \hat{f}_{j+1}+\hat{f}_j \hat{f}_{j+1}^\dagger \right) \\ +-\sum_{j=1}^{N-1} (J_x + J_y)\left(-\hat{f}_j\hat{f}_{j+1}^\dagger + \hat{f}_j^\dagger \hat{f}_{j+1} \right) \\ 
-& -\sum_{j=1}^{N-1} (J_x-J_y)\left(\hat{f}_j^\dagger \hat{f}_{j+1}^\dagger+\hat{f}_j\hat{f}_{j+1}\right).+& -\sum_{j=1}^{N-1} (J_x-J_y)\left(\hat{f}_j^\dagger \hat{f}_{j+1}^\dagger-\hat{f}_j\hat{f}_{j+1}\right).\\ \\ 
 + 
 +&=-\sum_{i=1}^N g_i (1-2\hat{f}_j^\dagger \hat{f}_j) 
 + 
 +-\sum_{j=1}^{N-1} (J_x J_y)\left(\hat{f}_j^\dagger \hat{f}_{j+1} + \hat{f}_{j+1}^\dagger\hat{f}_j  \right) \\ 
 +& -\sum_{j=1}^{N-1} (J_x-J_y)\left(\hat{f}_j^\dagger \hat{f}_{j+1}^\dagger+\hat{f}_{j+1}\hat{f}_j\right).
 \end{align} \end{align}
 +위에서 마지막 식에 도달할 때는 anticommutation relation을 사용하였다.
  
-(편의상, 주기적 경계 조건(periodic boundary condtiion)이 아닌 열린 경계 조건(open boudnary condition)을사용함으로써 두 번째와 세 번째 항의 합은 $j=N$이 아닌 $j=N-1$이다.)+(편의상, 주기적 경계 조건(periodic boundary condtiion)이 아닌 열린 경계 조건(open boudnary condition)을 사용함으로써 두 번째와 세 번째 항의 합은 $j=N$이 아닌 $j=N-1$이다.)
  
 $\\$ $\\$
Line 331: Line 337:
 $$ $$
  
-이를 아래와 같이 풀이하여 확인해보자.+이를 아래와 같이 풀이하여 직접 확인해보자.
 $$ $$
 \hat{H}(t) = i \sum_{j=1}^N g_j(t)\{\hat{f}_j^\dagger + \hat{f}_j\}\{i(\hat{f}_j^\dagger - \hat{f}_j)\}\\ \hat{H}(t) = i \sum_{j=1}^N g_j(t)\{\hat{f}_j^\dagger + \hat{f}_j\}\{i(\hat{f}_j^\dagger - \hat{f}_j)\}\\
Line 355: Line 361:
 \\ \\
 \to\  \to\ 
-\hat{H}(t) = - \sum_{j=1}^N g_j(t)\Big[ 1-2\hat{f}_{j}^\dagger \hat{f}_{j}  \Big]+\hat{H}(t) = - \sum_{j=1}^N g_j(t)\left( 1-2\hat{f}_{j}^\dagger \hat{f}_{j} \right)
 \\ \\
-- \sum_{j=1}^{N-1}\Big[ +-\sum_{j=1}^{N-1} (J_x + J_y)\left(\hat{f}_j^\dagger \hat{f}_{j+1} + \hat{f}_{j+1}^\dagger\hat{f}_j  \right) \\ 
-J_x\{\hat{f}_{j}^\dagger \hat{f}_{j+1}^\dagger + \hat{f}_{j}^\dagger \hat{f}_{j+1} - \hat{f}_{j}\hat{f}_{j+1}^\dagger - \hat{f}_{j}\hat{f}_{j+1} \}\\ + -\sum_{j=1}^{N-1} (J_x-J_y)\left(\hat{f}_j^\dagger \hat{f}_{j+1}^\dagger+\hat{f}_{j+1}\hat{f}_j\right).
--J_y \{\hat{f}_{j}^\dagger \hat{f}_{j+1}^\dagger - \hat{f}_{j}^\dagger \hat{f}_{j+1} \hat{f}_{j}\hat{f}_{j+1}^\dagger - \hat{f}_{j}\hat{f}_{j+1}\} \Big].+
 $$ $$
 +
 +즉, 앞서 본 Majorana fermion의 표현식이 실제로 원래의 식을 준다는 것을 확인하였다.
 +
  
 ====== 참고 문헌 ====== ====== 참고 문헌 ======
  • 물리/요르단-위그너_변환_jordan-wigner_transformation.1725785343.txt.gz
  • Last modified: 2024/09/08 17:49
  • by minwoo