Differences
This shows you the differences between two versions of the page.
| Both sides previous revision Previous revision Next revision | Previous revision | ||
| 물리:요르단-위그너_변환_jordan-wigner_transformation [2024/09/08 17:49] – minwoo | 물리:요르단-위그너_변환_jordan-wigner_transformation [2024/09/10 12:58] (current) – minwoo | ||
|---|---|---|---|
| Line 249: | Line 249: | ||
| 처음에 언급한 1차원 양자 스핀 모형인 ' | 처음에 언급한 1차원 양자 스핀 모형인 ' | ||
| - | 우선, 기존의 | + | 우선, 기존의 |
| $$ | $$ | ||
| \hat{H} = \sum_{i=1}^N g_i \hat{\sigma}^z_i - \sum_{i=1}^N (J_x \hat{\sigma}^x_{i} \hat{\sigma}^x_{i+1} + J_y \hat{\sigma}^y_{i}\hat{\sigma}^y_{i+1}). | \hat{H} = \sum_{i=1}^N g_i \hat{\sigma}^z_i - \sum_{i=1}^N (J_x \hat{\sigma}^x_{i} \hat{\sigma}^x_{i+1} + J_y \hat{\sigma}^y_{i}\hat{\sigma}^y_{i+1}). | ||
| Line 279: | Line 279: | ||
| & | & | ||
| - | & | + | & |
| - | &\qquad \quad +(J_x-J_y)\left(\hat{\sigma}_j^+\hat{\sigma}_{j+1}^+ +\hat{\sigma}_j^-\hat{\sigma}_{j+1}^-\right)\big].\\ | + | &\qquad \quad +(J_x-J_y)\left(\hat{\sigma}_j^+\hat{\sigma}_{j+1}^+ +\hat{\sigma}_j^-\hat{\sigma}_{j+1}^-\right)\Big].\\ |
| \end{align} | \end{align} | ||
| Line 307: | Line 307: | ||
| $\\$ | $\\$ | ||
| - | 따라서, | + | 따라서, |
| Line 313: | Line 313: | ||
| \hat{H}& | \hat{H}& | ||
| - | -\sum_{j=1}^{N-1} (J_x + J_y)\left(\hat{f}_j^\dagger \hat{f}_{j+1}+\hat{f}_j \hat{f}_{j+1}^\dagger \right) \\ | + | -\sum_{j=1}^{N-1} (J_x + J_y)\left(-\hat{f}_j\hat{f}_{j+1}^\dagger + \hat{f}_j^\dagger \hat{f}_{j+1} |
| - | & -\sum_{j=1}^{N-1} (J_x-J_y)\left(\hat{f}_j^\dagger \hat{f}_{j+1}^\dagger+\hat{f}_j\hat{f}_{j+1}\right). | + | & -\sum_{j=1}^{N-1} (J_x-J_y)\left(\hat{f}_j^\dagger |
| + | |||
| + | &=-\sum_{i=1}^N g_i (1-2\hat{f}_j^\dagger \hat{f}_j) | ||
| + | |||
| + | -\sum_{j=1}^{N-1} (J_x + J_y)\left(\hat{f}_j^\dagger | ||
| + | & -\sum_{j=1}^{N-1} (J_x-J_y)\left(\hat{f}_j^\dagger | ||
| \end{align} | \end{align} | ||
| + | 위에서 마지막 식에 도달할 때는 anticommutation relation을 사용하였다. | ||
| - | (편의상, 주기적 경계 조건(periodic boundary condtiion)이 아닌 열린 경계 조건(open boudnary condition)을사용함으로써 두 번째와 세 번째 항의 합은 $j=N$이 아닌 $j=N-1$이다.) | + | (편의상, 주기적 경계 조건(periodic boundary condtiion)이 아닌 열린 경계 조건(open boudnary condition)을 사용함으로써 두 번째와 세 번째 항의 합은 $j=N$이 아닌 $j=N-1$이다.) |
| $\\$ | $\\$ | ||
| Line 331: | Line 337: | ||
| $$ | $$ | ||
| - | 이를 아래와 같이 풀이하여 확인해보자. | + | 이를 아래와 같이 풀이하여 |
| $$ | $$ | ||
| \hat{H}(t) = i \sum_{j=1}^N g_j(t)\{\hat{f}_j^\dagger + \hat{f}_j\}\{i(\hat{f}_j^\dagger - \hat{f}_j)\}\\ | \hat{H}(t) = i \sum_{j=1}^N g_j(t)\{\hat{f}_j^\dagger + \hat{f}_j\}\{i(\hat{f}_j^\dagger - \hat{f}_j)\}\\ | ||
| Line 355: | Line 361: | ||
| \\ | \\ | ||
| \to\ | \to\ | ||
| - | \hat{H}(t) = - \sum_{j=1}^N g_j(t)\Big[ 1-2\hat{f}_{j}^\dagger \hat{f}_{j} | + | \hat{H}(t) = - \sum_{j=1}^N g_j(t)\left( 1-2\hat{f}_{j}^\dagger \hat{f}_{j} \right) |
| \\ | \\ | ||
| - | - \sum_{j=1}^{N-1}\Big[ | + | -\sum_{j=1}^{N-1} |
| - | J_x\{\hat{f}_{j}^\dagger \hat{f}_{j+1}^\dagger | + | -\sum_{j=1}^{N-1} (J_x-J_y)\left(\hat{f}_j^\dagger \hat{f}_{j+1}^\dagger+\hat{f}_{j+1}\hat{f}_j\right). |
| - | -J_y \{\hat{f}_{j}^\dagger \hat{f}_{j+1}^\dagger | + | |
| $$ | $$ | ||
| + | |||
| + | 즉, 앞서 본 Majorana fermion의 표현식이 실제로 원래의 식을 준다는 것을 확인하였다. | ||
| + | |||
| ====== 참고 문헌 ====== | ====== 참고 문헌 ====== | ||