Differences
This shows you the differences between two versions of the page.
Next revision | Previous revision | ||
물리:짚고_넘어가야_할_점 [2022/12/02 14:18] – created jiwon | 물리:짚고_넘어가야_할_점 [2023/09/05 15:46] (current) – external edit 127.0.0.1 | ||
---|---|---|---|
Line 1: | Line 1: | ||
- | 복제 대칭성 깨짐 해의 경우, 어떤 복제본들을 선택하냐에 따라서 헤세 행렬의 성분이 달라질 수 있다. 따라서 각 성분에 복제본의 | + | 복제 대칭성 깨짐 해의 경우, 어떤 복제본들을 선택하냐에 따라서 헤세 행렬의 성분이 달라질 수 있다. 따라서 각 성분에 복제본의 |
$$A\equiv A_{\alpha\alpha}=1-\beta J_0(1-m^2)$$ | $$A\equiv A_{\alpha\alpha}=1-\beta J_0(1-m^2)$$ | ||
$$B_{\alpha\beta} \rightarrow \begin{cases} | $$B_{\alpha\beta} \rightarrow \begin{cases} | ||
Line 98: | Line 98: | ||
\right) | \right) | ||
$$ | $$ | ||
- | 복제 대칭해의 경우에 얻었던 $n(n-1)2$의 중복도를 가지는 replicon mode를 똑같이 얻어내었다. | + | 복제 대칭해의 경우에 얻었던 $n(n-1)2$의 중복도를 가지는 replicon mode를 똑같이 얻어내었다. |
+ | $$ | ||
+ | \mathbf G= | ||
+ | \left( | ||
+ | \begin{array}{cccccccccc} | ||
+ | A & B_0 & B_0 & B_0 & C_0 & C_0 & C_0 & D_{02} & D_{02} & D_{02} \\ | ||
+ | B_0 & A & B_0 & B_0 & C_0 & D_{02} & D_{02} & C_0 & C_0 & D_{02} \\ | ||
+ | B_0 & B_0 & A & B_0 & D_{02} & C_0 & D_{02} & C_0 & D_{02} & C_0 \\ | ||
+ | B_0 & B_0 & B_0 & A & D_{02} & D_{02} & C_0 & D_{02} & C_0 & C_0 \\ | ||
+ | C_0 & C_0 & D_{02} & D_{02} & P_0 & Q_{00} & Q_{00} & Q_{00} & \ | ||
+ | Q_{00} & R_{1:1:1:1} \\ | ||
+ | C_0 & D_{02} & C_0 & D_{02} & Q_{00} & P_0 & Q_{00} & Q_{00} & \ | ||
+ | R_{1: | ||
+ | C_0 & D_{02} & D_{02} & C_0 & Q_{00} & Q_{00} & P_0 & R_{1:1:1:1} & \ | ||
+ | Q_{00} & Q_{00} \\ | ||
+ | D_{02} & C_0 & C_0 & D_{02} & Q_{00} & Q_{00} & R_{1:1:1:1} & P_0 & \ | ||
+ | Q_{00} & Q_{00} \\ | ||
+ | D_{02} & C_0 & D_{02} & C_0 & Q_{00} & R_{1:1:1:1} & Q_{00} & Q_{00} \ | ||
+ | & P_0 & Q_{00} \\ | ||
+ | D_{02} & D_{02} & C_0 & C_0 & R_{1:1:1:1} & Q_{00} & Q_{00} & Q_{00} \ | ||
+ | & Q_{00} & P_0 \\ | ||
+ | \end{array} | ||
+ | \right) | ||
+ | $$ | ||
+ | 고윳값들은 | ||
+ | $$ | ||
+ | \left( | ||
+ | \begin{array}{c} | ||
+ | P_0-2 Q_{00}+R_{1: | ||
+ | P_0-2 Q_{00}+R_{1: | ||
+ | \frac{1}{2} \left(-\sqrt{(A+3 B_0+P_0+4 Q_{00}+R_{1: | ||
+ | B_0) (P_0+4 Q_{00}+R_{1: | ||
+ | D_{02}^2}+A+3 B_0+P_0+4 Q_{00}+R_{1: | ||
+ | \frac{1}{2} \left(\sqrt{(A+3 B_0+P_0+4 Q_{00}+R_{1: | ||
+ | B_0) (P_0+4 Q_{00}+R_{1: | ||
+ | D_{02}^2}+A+3 B_0+P_0+4 Q_{00}+R_{1: | ||
+ | \frac{1}{2} \left(-\sqrt{(A-B_0+P_0-R_{1: | ||
+ | (P_0-R_{1: | ||
+ | D_{02}^2}+A-B_0+P_0-R_{1: | ||
+ | \frac{1}{2} \left(-\sqrt{(A-B_0+P_0-R_{1: | ||
+ | (P_0-R_{1: | ||
+ | D_{02}^2}+A-B_0+P_0-R_{1: | ||
+ | \frac{1}{2} \left(-\sqrt{(A-B_0+P_0-R_{1: | ||
+ | (P_0-R_{1: | ||
+ | D_{02}^2}+A-B_0+P_0-R_{1: | ||
+ | \frac{1}{2} \left(\sqrt{(A-B_0+P_0-R_{1: | ||
+ | (P_0-R_{1: | ||
+ | D_{02}^2}+A-B_0+P_0-R_{1: | ||
+ | \frac{1}{2} \left(\sqrt{(A-B_0+P_0-R_{1: | ||
+ | (P_0-R_{1: | ||
+ | D_{02}^2}+A-B_0+P_0-R_{1: | ||
+ | \frac{1}{2} \left(\sqrt{(A-B_0+P_0-R_{1: | ||
+ | (P_0-R_{1: | ||
+ | D_{02}^2}+A-B_0+P_0-R_{1: | ||
+ | \end{array} | ||
+ | \right) | ||
+ | $$ | ||
+ | 가 되며, replicon mode의 중복도는 2가 된다. $n=4$, $m_1=2$라면 | ||
+ | $$\mathbf G= | ||
+ | \left( | ||
+ | \begin{array}{cccccccccc} | ||
+ | A & B_1 & B_0 & B_0 & C_1 & C_0 & C_0 & D_{01} & D_{01} & D_{11} \\ | ||
+ | B_1 & A & B_0 & B_0 & C_1 & D_{01} & D_{01} & C_0 & C_0 & D_{11} \\ | ||
+ | B_0 & B_0 & A & B_1 & D_{11} & C_0 & D_{01} & C_0 & D_{01} & C_1 \\ | ||
+ | B_0 & B_0 & B_1 & A & D_{11} & D_{01} & C_0 & D_{01} & C_0 & C_1 \\ | ||
+ | C_1 & C_1 & D_{11} & D_{11} & P_1 & Q_{01} & Q_{01} & Q_{01} & \ | ||
+ | Q_{01} & R_{2:2,1} \\ | ||
+ | C_0 & D_{01} & C_0 & D_{01} & Q_{01} & P_0 & Q_{10} & Q_{10} & \ | ||
+ | R_{2: | ||
+ | C_0 & D_{01} & D_{01} & C_0 & Q_{01} & Q_{10} & P_0 & R_{2:2,0} & \ | ||
+ | Q_{10} & Q_{01} \\ | ||
+ | D_{01} & C_0 & C_0 & D_{01} & Q_{01} & Q_{10} & R_{2:2,0} & P_0 & \ | ||
+ | Q_{10} & Q_{01} \\ | ||
+ | D_{01} & C_0 & D_{01} & C_0 & Q_{01} & R_{2:2,0} & Q_{10} & Q_{10} & \ | ||
+ | P_0 & Q_{01} \\ | ||
+ | D_{11} & D_{11} & C_1 & C_1 & R_{2:2,1} & Q_{01} & Q_{01} & Q_{01} & \ | ||
+ | Q_{01} & P_1 \\ | ||
+ | \end{array} | ||
+ | \right) | ||
+ | $$ | ||
+ | 고윳값들은 | ||
+ | $$ | ||
+ | \left( | ||
+ | \begin{array}{c} | ||
+ | P_0-2 Q_{10}+R_{2: | ||
+ | \frac{1}{2} \left(-\sqrt{(A-B_1+P_0-R_{2: | ||
+ | (P_0-R_{2: | ||
+ | \right) \\ | ||
+ | \frac{1}{2} \left(-\sqrt{(A-B_1+P_0-R_{2: | ||
+ | (P_0-R_{2: | ||
+ | \right) \\ | ||
+ | \frac{1}{2} \left(\sqrt{(A-B_1+P_0-R_{2: | ||
+ | (P_0-R_{2: | ||
+ | \right) \\ | ||
+ | \frac{1}{2} \left(\sqrt{(A-B_1+P_0-R_{2: | ||
+ | (P_0-R_{2: | ||
+ | \right) \\ | ||
+ | \frac{1}{2} \left(-\sqrt{(A-2 B_0+B_1+P_1-R_{2: | ||
+ | (P_1-R_{2: | ||
+ | B_0+B_1+P_1-R_{2: | ||
+ | \frac{1}{2} \left(\sqrt{(A-2 B_0+B_1+P_1-R_{2: | ||
+ | (P_1-R_{2: | ||
+ | B_0+B_1+P_1-R_{2: | ||
+ | \cdots | ||
+ | \end{array} | ||
+ | \right) | ||
+ | $$ | ||
+ | 로 중복도가 2가 아니라 1이 된다. | ||