Differences
This shows you the differences between two versions of the page.
| Both sides previous revision Previous revision Next revision | Previous revision | ||
| 물리:2차원_이징_모형 [2022/01/16 21:09] – [반교환자] admin | 물리:2차원_이징_모형 [2025/06/12 17:00] (current) – [자유에너지] admin | ||
|---|---|---|---|
| Line 282: | Line 282: | ||
| =====자유에너지===== | =====자유에너지===== | ||
| 다시 작용을 적어보면 | 다시 작용을 적어보면 | ||
| + | $$S = \frac{1}{2\pi} \int d^2 x (\varphi \bar{\partial} \varphi + \bar{\varphi} \partial \bar{\varphi} + im\bar{\varphi} \varphi)$$ | ||
| + | 이며, 여기에서 미분연산자는 반대칭행렬로 나타낼 수 있음에 유의할 것. 예를 들어 간격 $\Delta$로 $N$개의 입자가 늘어서 있는 길이 $L=N\Delta$의 1차원 계를 생각한다면 | ||
| \begin{eqnarray} | \begin{eqnarray} | ||
| - | S &=& \frac{1}{2} | + | &&\int dx \left( |
| - | &=& \frac{1}{2} \int d^2 x \begin{pmatrix} | + | \approx |
| - | \begin{pmatrix} | + | &=& \begin{pmatrix} \varphi_0 & \varphi_1 |
| - | \bar{\partial} & -im/2 \\ | + | \left( |
| - | im/2 & \partial | + | 0 & \frac{1}{4\Delta} & 0 & \cdots & 0 & -\frac{1}{4\Delta} |
| - | \end{pmatrix} | + | -\frac{1}{4\Delta} & 0 & \frac{1}{4\Delta} & \cdots & 0 & 0 & 0 & -\frac{im}{2} & 0 & 0 & \cdots & 0\\ |
| - | \begin{pmatrix} | + | \vdots & & & \ddots & & & \vdots & & & & \ddots & \vdots \\ |
| - | &\sim& | + | \frac{1}{4\Delta} & 0 & 0 & \cdots |
| - | \frac{1}{2} \sum_x \begin{pmatrix} | + | \frac{im}{2} & 0 & 0 & 0 & \cdots |
| - | \begin{pmatrix} | + | 0 & \frac{im}{2} & 0 & 0 & \cdots |
| - | \bar{\partial} & -im/2 \\ | + | \vdots |
| - | im/2 & \partial | + | 0 & 0 & 0 & 0 & \cdots & -\frac{im}{2} & \frac{1}{4\Delta} & 0 & 0 & \cdots & -\frac{1}{4\Delta} & 0 |
| - | \end{pmatrix} | + | \end{array}\right) |
| - | \begin{pmatrix} \varphi | + | \begin{pmatrix} |
| - | &=& | + | &=& -\frac{1}{2} \sum_{\alpha=0}^{2N-1} \sum_{\beta=0}^{2N-1} \tilde{\varphi}_\alpha \Lambda_{\alpha\beta} \tilde{\varphi}_\beta. |
| - | \frac{1}{2} | + | |
| - | \begin{pmatrix} | + | |
| - | \begin{pmatrix} | + | |
| - | \bar{\partial} & -im/2 & 0 & 0 & \cdots \\ | + | |
| - | im/2 & \partial | + | |
| - | 0 & 0 & \bar{\partial} & -im/2 & \cdots\\ | + | |
| - | 0 & 0 & im/2 & \partial | + | |
| - | \vdots & \vdots & \vdots & \vdots & \ddots | + | |
| - | \end{pmatrix} | + | |
| - | \begin{pmatrix} \varphi_{x_1} \\ \bar{\varphi}_{x_1} | + | |
| - | &\rightarrow& \frac{1}{2} \Psi(\varphi) \Lambda | + | |
| \end{eqnarray} | \end{eqnarray} | ||
| - | 이며 이것을 지수함수 위에 올려 적분하는 분배함수는 | + | 여기에서는 중심미분을 사용했지만 앞에서와 일관되게 $\partial_1 \varphi \approx (\varphi_{j+1}-\varphi_j)/ |
| - | $$Z = \int D\varphi D\bar{\varphi} \exp(-S) = \prod_i | + | |
| - | 그러므로 여기에 로그를 취하면 | + | 이것을 지수함수 위에 올려 적분하는 분배함수는 |
| + | $$Z = \int D\tilde{\varphi} \exp(-S) = \text{Pfaff}\Lambda = \prod_{n=0}^{N-1} \left( \frac{1}{\Delta^2} \sin^2 k_n \Delta + m^2 \right)^{1/ | ||
| + | |||
| + | 2차원 문제로 돌아와서 $k^2=k_x^2 +k_y^2$으로 일반화하고 $Z$에 로그를 취하면 | ||
| \begin{eqnarray} | \begin{eqnarray} | ||
| - | -\beta | + | -\beta |
| - | & | + | \propto |
| - | &=& \int dp ~2\pi p \ln (p^2 + m^2)\\ | + | = \frac{1}{8\pi^2} |
| - | &=& \pi [(p^2+m^2) \ln(p^2+m^2) - p^2]. | + | & |
| + | = \frac{1}{8\pi} m^2 \ln(m^2) + k^2 \ln(m^2) + O(k^4). | ||
| \end{eqnarray} | \end{eqnarray} | ||
| - | $p \to 0$에서 $-\beta | + | 장파장 영역($k \to 0$)에서 $-\beta |
| + | =====함께 보기===== | ||
| + | [[물리: | ||
| ======참고문헌====== | ======참고문헌====== | ||
| - | * Robert Savit, //Duality in field theory and statistical systems//, Rev. Mod. Phys. 52, 453 (1980) | + | * Robert Savit, //Duality in field theory and statistical systems//, Rev. Mod. Phys. 52, 453 (1980). |
| * //Ising Field Theory// by A. Zamolodchikov, | * //Ising Field Theory// by A. Zamolodchikov, | ||
| * V. N. Plechko, J. Phys. Studies, 1, 554 (1997). | * V. N. Plechko, J. Phys. Studies, 1, 554 (1997). | ||
| + | * https:// | ||
| + | * J.M Carmona, A. Di Giacomoa, and B. Lucini, //A disorder analysis of the Ising model//, Phys. Lett. B, 485, 126 (2000). | ||
| + | * Massimo D’Elia and Luca Tagliacozzo, | ||