물리:2차원_이징_모형

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
물리:2차원_이징_모형 [2022/01/20 16:56] – [참고문헌] admin물리:2차원_이징_모형 [2025/06/12 17:00] (current) – [자유에너지] admin
Line 316: Line 316:
 장파장 영역($k \to 0$)에서 $-\beta f \propto m^2 \ln m^2$이며 $m = 4(K-K_c)$이므로 $m$으로의 미분은 $K$로의 미분과 대응된다. 즉 $\frac{\partial^2 f}{\partial K^2} \propto -\ln m^2$이 되어 비열이 임계점에서 로그 발산을 보인다. 장파장 영역($k \to 0$)에서 $-\beta f \propto m^2 \ln m^2$이며 $m = 4(K-K_c)$이므로 $m$으로의 미분은 $K$로의 미분과 대응된다. 즉 $\frac{\partial^2 f}{\partial K^2} \propto -\ln m^2$이 되어 비열이 임계점에서 로그 발산을 보인다.
  
 +=====함께 보기=====
 +[[물리:이징 장론]]
  
 ======참고문헌====== ======참고문헌======
-  * Robert Savit, //Duality in field theory and statistical systems//, Rev. Mod. Phys. 52, 453 (1980)+  * Robert Savit, //Duality in field theory and statistical systems//, Rev. Mod. Phys. 52, 453 (1980).
   * //Ising Field Theory// by A. Zamolodchikov, https://www.weizmann.ac.il/complex/falkovich/courses   * //Ising Field Theory// by A. Zamolodchikov, https://www.weizmann.ac.il/complex/falkovich/courses
   * V. N. Plechko, J. Phys. Studies, 1, 554 (1997).   * V. N. Plechko, J. Phys. Studies, 1, 554 (1997).
   * https://gandhiviswanathan.wordpress.com/2018/10/31/exact-solution-of-the-2d-ising-model-via-grassmann-variables/   * https://gandhiviswanathan.wordpress.com/2018/10/31/exact-solution-of-the-2d-ising-model-via-grassmann-variables/
 +  * J.M Carmona, A. Di Giacomoa, and B. Lucini, //A disorder analysis of the Ising model//, Phys. Lett. B, 485, 126 (2000).
 +  * Massimo D’Elia and Luca Tagliacozzo, //Direct numerical computation of disorder parameters//, Phys. Rev. D 74, 114510 (2006).
  • 물리/2차원_이징_모형.1642665416.txt.gz
  • Last modified: 2023/09/05 15:46
  • (external edit)