Differences
This shows you the differences between two versions of the page.
| Both sides previous revision Previous revision Next revision | Previous revision | ||
| 수학:범함수 [2020/01/10 12:08] – [또다른 예: 감쇠 오일러 방정식의 분석] admin | 수학:범함수 [2023/09/05 15:46] (current) – external edit 127.0.0.1 | ||
|---|---|---|---|
| Line 149: | Line 149: | ||
| \[ \frac{dF}{dt} = \int (\rho \vec{u}) \cdot (-\xi \vec{u}) d\vec{r} = - \int \rho \xi |\vec{u}|^2 d\vec{r} \le 0. \] | \[ \frac{dF}{dt} = \int (\rho \vec{u}) \cdot (-\xi \vec{u}) d\vec{r} = - \int \rho \xi |\vec{u}|^2 d\vec{r} \le 0. \] | ||
| + | ======함께 보기====== | ||
| + | *[[전산물리학: | ||
| + | *[[전자기학: | ||
| + | *[[물리: | ||
| ======참고 문헌====== | ======참고 문헌====== | ||
| * T. Lancaster and S. J. Blundell, //Quantum Field Theory for the Gited Amateur// (Oxford Univerty Press, 2014). | * T. Lancaster and S. J. Blundell, //Quantum Field Theory for the Gited Amateur// (Oxford Univerty Press, 2014). | ||
| - | * P. H. Chavanis, Eur. Phys. J. B 62, 179 (2008) [[doi: | + | * P. H. Chavanis, Eur. Phys. J. B 62, 179 (2008) [[http:// |