Differences
This shows you the differences between two versions of the page.
| Both sides previous revision Previous revision Next revision | Previous revision | ||
| 수학:오차_분석 [2018/07/10 14:54] – [선형 회귀 분석] admin | 수학:오차_분석 [2023/09/05 15:46] (current) – external edit 127.0.0.1 | ||
|---|---|---|---|
| Line 26: | Line 26: | ||
| 로 정의하면 계수 $a$와 $b$는 | 로 정의하면 계수 $a$와 $b$는 | ||
| $$a = \overline{Y} - b \overline{X}$$ | $$a = \overline{Y} - b \overline{X}$$ | ||
| - | $$b = \frac{Cov(X, | + | $$b = \frac{Cov(X, |
| 로 결정된다. 나아가 | 로 결정된다. 나아가 | ||
| $$SS_x \equiv \sum_{i=1}^n (X_i-\overline{X})^2$$ | $$SS_x \equiv \sum_{i=1}^n (X_i-\overline{X})^2$$ | ||
| Line 37: | Line 37: | ||
| 이다. | 이다. | ||
| - | 좀더 정밀하게는 $t$ 분포를 사용해서, | + | 좀더 정밀하게는 $t$ 분포를 사용해서, |
| =====예제===== | =====예제===== | ||
| Line 53: | Line 53: | ||
| ^ 10| 9 | 20 | | ^ 10| 9 | 20 | | ||
| - | 계산해보면 $a = -2.270$, $b = 2.609$이며 $SS_x = \sum (X_i - \overline{X})^2 = 46$, 평균 제곱근 오차는 $s_{\small Y \cdot X} = 2.631$이다. $a$의 표준오차는 $\sigma_a | + | 계산해보면 $a = -2.270$, $b = 2.609$이며 $SS_x = \sum (X_i - \overline{X})^2 = 46$, 평균 제곱근 오차는 $s_{\small Y \cdot X} = 2.631$이다. $b$의 표준오차는 $\sigma_b |
| 이 예에서 자유도 $n-2=8$이므로 95% 신뢰구간을 보고하려면 $t(8; | 이 예에서 자유도 $n-2=8$이므로 95% 신뢰구간을 보고하려면 $t(8; | ||
| + | |||
| + | =====원점을 지나야만 하는 경우===== | ||
| + | 종종 $(0,0)$을 지나는 것이 너무나 자명한 경우 이 사실을 이용할 수 있다. 이 때 기울기는 | ||
| + | $$b = \frac{\sum X_i Y_i}{\sum X_i^2}$$ | ||
| + | 으로 추정하고 그 표준오차는 다음과 같다: | ||
| + | $$s_b = \sqrt{\frac{\sum (Y_i - b X_i)^2}{n-1}} \frac{\sqrt{\sum X_i^2}}{\sum X_i^2}.$$ | ||
| ======참고문헌====== | ======참고문헌====== | ||
| * Boas, // | * Boas, // | ||
| * 박성현, 김성수, 강명욱, // | * 박성현, 김성수, 강명욱, // | ||
| + | * https:// | ||