전산물리학:qr_알고리듬

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
전산물리학:qr_알고리듬 [2016/05/23 10:30] – [설명] admin전산물리학:qr_알고리듬 [2023/09/05 15:46] (current) – external edit 127.0.0.1
Line 91: Line 91:
 $A$의 $i$ 번째 고유치가 $\lambda_i$, 그에 해당하는 고유 벡터가 $\vec{v}_i$라고 하자: $A$의 $i$ 번째 고유치가 $\lambda_i$, 그에 해당하는 고유 벡터가 $\vec{v}_i$라고 하자:
 $$A \vec{v}_i = \lambda_i \vec{v}_i.$$ $$A \vec{v}_i = \lambda_i \vec{v}_i.$$
-편의상 $\left| \lambda_0 \right| > \left| \lambda_0 \right| > \ldots$로 정렬되어 있다고 하자.+편의상 $\left| \lambda_0 \right| > \left| \lambda_1 \right| > \ldots$로 정렬되어 있다고 하자.
  
 $A=Q_1 R_1$일 때에 이로부터 유도되는 또다른 행렬이 $A_1 = R_1 Q_1 = Q_2 R_2$라고 했으므로 $A=Q_1 R_1$일 때에 이로부터 유도되는 또다른 행렬이 $A_1 = R_1 Q_1 = Q_2 R_2$라고 했으므로
Line 107: Line 107:
 임의의 $\vec{u}$에 대해 이 성질이 성립한다는 것은 $A^n$의 열들이 이미 $\vec{v}_0$와 유사한 방향임을 의미한다. 임의의 $\vec{u}$에 대해 이 성질이 성립한다는 것은 $A^n$의 열들이 이미 $\vec{v}_0$와 유사한 방향임을 의미한다.
  
-따라서 $A^n = \hat{Q} \hat{R}$로 분해했을 때, 그람-슈미트 방법에 따라 $\hat{Q}$의 첫 번째 벡터 $\vec{q}_0$는 $A^n$의 첫 번쨰 열 벡터와 같은 방향이므로 $\vec{v}_0$에 해당한다. +$A^n = \hat{Q} \hat{R}$로 분해했을 때, 그람-슈미트 방법에 따라 $\hat{Q}$의 첫 번째 벡터 $\vec{q}_0$는 $A^n$의 첫 번째 열 벡터와 같은 방향이다. 즉 $\vec{q}_0$는 $\vec{v}_0$에 해당한다.
- +
-이에 해당하는 성분을 지우고 나면($a_0=0$), $A^n \vec{u}$의 나머지 성분들은 대략 $\vec{v}_1$ 방향을 가리키게 될 것이다. 즉 그람-슈미트 방법에서는 $A^n$의 두 번째 열 벡터로부터 $\vec{q}_0$ 방향의 성분을 지움으로써 두 번째 벡터 $\vec{q}_1$을 얻는데, 이는 $\vec{v}_1방향을 향하게 된다. +
  
 +그람-슈미트 방법을 따라 $A^n$의 열들로부터 이미 찾은 벡터들과 직교하는 공간을 생각하면 $\vec{q}_1, \vec{q}_2, \ldots$를 얻는다. 이는
 +$$A^n \vec{u} = a_0 \lambda_0^n \vec{v}_0 + a_1 \lambda_1^n \vec{v}_1 + a_2 \lambda_2^n \vec{v}_2 + \ldots$$
 +에서 $0 = a_0 = a_1 = \ldots$에 해당하고 따라서 그 때마다 $\vec{v}_1, \vec{v}_2,\ldots$들을 근사적으로 얻게 된다.
  
  
  • 전산물리학/qr_알고리듬.1463968832.txt.gz
  • Last modified: 2023/09/05 15:46
  • (external edit)