전산물리학:qr_알고리듬

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
전산물리학:qr_알고리듬 [2016/05/23 11:17] – [설명] admin전산물리학:qr_알고리듬 [2023/09/05 15:46] (current) – external edit 127.0.0.1
Line 109: Line 109:
 $A^n = \hat{Q} \hat{R}$로 분해했을 때, 그람-슈미트 방법에 따라 $\hat{Q}$의 첫 번째 벡터 $\vec{q}_0$는 $A^n$의 첫 번째 열 벡터와 같은 방향이다. 즉 $\vec{q}_0$는 $\vec{v}_0$에 해당한다. $A^n = \hat{Q} \hat{R}$로 분해했을 때, 그람-슈미트 방법에 따라 $\hat{Q}$의 첫 번째 벡터 $\vec{q}_0$는 $A^n$의 첫 번째 열 벡터와 같은 방향이다. 즉 $\vec{q}_0$는 $\vec{v}_0$에 해당한다.
  
-그람-슈미트 방법을 따라 이미 찾은 벡터들과 직교하는 공간을 생각하면 $\vec{q}_1, \vec{q}_2, \ldots$를 얻는다. 이는 +그람-슈미트 방법을 따라 $A^n$의 열들로부터 이미 찾은 벡터들과 직교하는 공간을 생각하면 $\vec{q}_1, \vec{q}_2, \ldots$를 얻는다. 이는 
-$$A^n \vec{u} &=a_0 \lambda_0^n \vec{v}_0 + a_1 \lambda_1^n \vec{v}_1 + a_2 \lambda_2^n \vec{v}_2 + \ldots$$+$$A^n \vec{u} = a_0 \lambda_0^n \vec{v}_0 + a_1 \lambda_1^n \vec{v}_1 + a_2 \lambda_2^n \vec{v}_2 + \ldots$$
 에서 $0 = a_0 = a_1 = \ldots$에 해당하고 따라서 그 때마다 $\vec{v}_1, \vec{v}_2,\ldots$들을 근사적으로 얻게 된다. 에서 $0 = a_0 = a_1 = \ldots$에 해당하고 따라서 그 때마다 $\vec{v}_1, \vec{v}_2,\ldots$들을 근사적으로 얻게 된다.
  
  • 전산물리학/qr_알고리듬.1463971638.txt.gz
  • Last modified: 2023/09/05 15:46
  • (external edit)