전산물리학:qr_알고리듬

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
전산물리학:qr_알고리듬 [2017/07/11 16:13] – external edit 127.0.0.1전산물리학:qr_알고리듬 [2023/09/05 15:46] (current) – external edit 127.0.0.1
Line 110: Line 110:
  
 그람-슈미트 방법을 따라 $A^n$의 열들로부터 이미 찾은 벡터들과 직교하는 공간을 생각하면 $\vec{q}_1, \vec{q}_2, \ldots$를 얻는다. 이는 그람-슈미트 방법을 따라 $A^n$의 열들로부터 이미 찾은 벡터들과 직교하는 공간을 생각하면 $\vec{q}_1, \vec{q}_2, \ldots$를 얻는다. 이는
-$$A^n \vec{u} &=a_0 \lambda_0^n \vec{v}_0 + a_1 \lambda_1^n \vec{v}_1 + a_2 \lambda_2^n \vec{v}_2 + \ldots$$+$$A^n \vec{u} = a_0 \lambda_0^n \vec{v}_0 + a_1 \lambda_1^n \vec{v}_1 + a_2 \lambda_2^n \vec{v}_2 + \ldots$$
 에서 $0 = a_0 = a_1 = \ldots$에 해당하고 따라서 그 때마다 $\vec{v}_1, \vec{v}_2,\ldots$들을 근사적으로 얻게 된다. 에서 $0 = a_0 = a_1 = \ldots$에 해당하고 따라서 그 때마다 $\vec{v}_1, \vec{v}_2,\ldots$들을 근사적으로 얻게 된다.
  
  • 전산물리학/qr_알고리듬.1499758983.txt.gz
  • Last modified: 2023/09/05 15:46
  • (external edit)