This is an old revision of the document!
구면 $p$-스핀 유리 모형(Spherical p-spin glass model)
이 모형의 해밀토니안은 무작위 에너지 모형의 해밀토니안과 같다. 단 한가지 차이는 이 모형에서는 스핀 변수가 $-\infty$부터 $\infty$까지 실수의 값을 가질 수 있다는 것이다. 여기서도 복제 방법을 사용해서 모형을 분석해보자.
$n$개의 복제본에 대한 분배함수
무작위 에너지 모형을 참고하면 $n$개의 복제본에 대한 분배함수는 다음과 같이 쓸 수 있다. $$\overline{Z^n}=\text{Tr}_{\sigma}\exp\left[\frac{(\beta J)^2}{4}N\sum_{\alpha\beta}\frac{p!}{N^p}\sum_{i_1<\cdots<i_p}\sigma_{i_1}^\alpha\sigma_{i_1}^\beta\cdots\sigma_{i_p}^\alpha\sigma_{i_p}^\beta+\beta h\sum_{i,a}\sigma_i^a\right]$$ $i_1,\cdots,i_p$에 대한 합을 다음과 같이 나누어 쓰자. $$p!\sum_{i_1<\cdots<i_p} = \sum_{i_1,\cdots,i_p}-\frac{p(p-1)}2\sum_{i_1,i_1\neq i_3,\cdots}$$ 이렇게 두고 분배함수를 다시 쓰면 $$\overline{Z^n}=\text{Tr}_{\sigma}\exp\left[\frac{(\beta J)^2}{4}N\sum_{\alpha\beta}\left\{\frac1{N^p}\left(\sum_i\sigma_i^\alpha\sigma_i^\beta\right)^p-\frac{p(p-1)}2\frac1{N^{p-2}}\left(\sum_i\sigma_i^\alpha\sigma_i^\beta\right)^{p-2}\left(\sum_i(\sigma_i^\alpha\sigma_i^\beta)^2\right)\right\}+\beta h\sum_{i,a}\sigma_i^a\right]$$ 가 된다. $q_{\alpha\beta}=N^{-1}\sum_i\sigma_i^\alpha\sigma_i^\beta$로 정의하고, 이를 만족하기 위한 구속조건 \begin{align*} 1=&\int\prod_{\alpha<\beta}dq_{\alpha\beta}\delta\left(Nq_{\alpha\beta}-\sum_{i=1}^N\sigma_i^\alpha\sigma_i^\beta\right)\\ =&\int\prod_{\alpha<\beta}dq_{\alpha\beta}\int_{-i\infty}^{+i\infty}\prod_{\alpha<\beta}\frac N{2\pi i}d\lambda_{\alpha\beta}\exp\left[-\frac12\sum_{\alpha\neq\beta}\lambda_{\alpha\beta}\left(Nq_{\alpha\beta}-\sum_{i=1}^N\sigma_i^\alpha\sigma_i^\beta\right)\right] \end{align*} 과 스핀에 대한 대각합 \begin{align*} \text{Tr}_\sigma =& \int_{-\infty}^{+\infty}\prod_{i,\alpha}d\sigma_i^\alpha\prod_\alpha\delta\left(N-\sum_{i=1}^N(\sigma_i^\alpha)^2\right)\\ =&\int_{-\infty}^{+\infty}\prod_{i,\alpha}d\sigma_i^\alpha\int_{-i\infty}^{+i\infty}\prod_\alpha\frac{d\lambda_{\alpha\alpha}}{4\pi i}\exp\left[-\frac12\sum_\alpha\lambda_{\alpha\alpha}\left(Nq_{\alpha\alpha}-\sum_{i=1}^N(\sigma_i^\alpha)^2\right)\right] \end{align*} 을 넣어서 쓰면 분배함수를 \begin{align*} \overline{Z^n}=&\int\prod_{\alpha<\beta}dq_{\alpha\beta}\int_{-i\infty}^{+i\infty}\prod_{\alpha<\beta}\frac N{2\pi i}d\lambda_{\alpha\beta}\int_{-i\infty}^{+i\infty}\prod_\alpha\frac{d\lambda_{\alpha\alpha}}{4\pi i}\int_{-\infty}^{+\infty}\prod_{i,\alpha}d\sigma_i^\alpha\\ &\quad\times\exp\left[-\frac N2\sum_{\alpha\beta}\lambda_{\alpha\beta}q_{\alpha\beta}+\frac{(\beta J)}4N\sum_{\alpha\beta}q_{\alpha\beta}^p-\frac{(\beta J)^2}{8N}p(p-1)\sum_{\alpha\beta}q_{\alpha\beta}^{p-2}\left(\sum_i(\sigma_i^\alpha\sigma_i^\beta)^2\right)+\frac12\sum_{\alpha\beta}\lambda_{\alpha\beta}\sum_i\sigma_i^\alpha\sigma_i^\beta+\beta h\sum_{i,\alpha}\sigma_i^\alpha\right] \end{align*} 와 같이 쓸 수 있다.
스핀에 대한 대각합
분배함수 중 스핀 변수와 관련된 부분을 모으면 \begin{align*} &\int_{-\infty}^{+\infty}\prod_{i,\alpha}d\sigma_i^\alpha \exp\left[-\frac{(\beta J)^2}{8N}p(p-1)\sum_{\alpha\beta}q_{\alpha\beta}^{p-2}\left(\sum_i(\sigma_i^\alpha\sigma_i^\beta)^2\right)+\frac12\sum_{\alpha\beta}\lambda_{\alpha\beta}\sum_i\sigma_i^\alpha\sigma_i^\beta+\beta h\sum_{i,\alpha}\sigma_i^\alpha\right]\\ =&\left[\int_{-\infty}^{+\infty}\prod_{\alpha}d\sigma^\alpha \exp\left[-\frac{(\beta J)^2}{8N}p(p-1)\sum_{\alpha\beta}q_{\alpha\beta}^{p-2}(\sigma^\alpha\sigma^\beta)^2+\frac12\sum_{\alpha\beta}\lambda_{\alpha\beta}\sigma^\alpha\sigma^\beta+\beta h\sum_{\alpha}\sigma^\alpha\right]\right]^N \end{align*} 로 쓸 수 있고, $\beta H_{\text{eff}} = \frac12\sum_{\alpha\beta}\lambda_{\alpha\beta}\sigma^\alpha\sigma^\beta+\beta h\sum_{\alpha}\sigma^\alpha$로 두고 위 식을 전개하면 \begin{align*} &\left[\int_{-\infty}^{+\infty}\prod_{\alpha}d\sigma^\alpha e^{\beta H_{\text{eff}}}\exp\left(-\frac{(\beta J)^2}{8N}p(p-1)\sum_{\alpha\beta}q_{\alpha\beta}^{p-2}(\sigma^\alpha\sigma^\beta)^2\right)\right]^N\\ \approx&\left[\int_{-\infty}^{+\infty}\prod_{\alpha}d\sigma^\alpha e^{\beta H_{\text{eff}}}\left(1-\frac{(\beta J)^2}{8N}p(p-1)\sum_{\alpha\beta}q_{\alpha\beta}^{p-2}(\sigma^\alpha\sigma^\beta)^2+\mathcal O(N^{-2})\right)\right]^N\\ &\exp\left[N\log\left\{\int_{-\infty}^{+\infty}\prod_{\alpha}d\sigma^\alpha e^{\beta H_{\text{eff}}}-\frac{(\beta J)^2}{8N}p(p-1)\sum_{\alpha\beta}q_{\alpha\beta}^{p-2}\int_{-\infty}^{+\infty}\prod_{\alpha}d\sigma^\alpha e^{\beta H_{\text{eff}}}(\sigma^\alpha\sigma^\beta)^2\right\}\right]\\ =&\exp\left[N\log\left(\int_{-\infty}^{+\infty}\prod_{\alpha}d\sigma^\alpha e^{\beta H_{\text{eff}}}\right)+N\log\left\{1-\frac{(\beta J)^2}{8N}p(p-1)\sum_{\alpha\beta}q_{\alpha\beta}^{p-2}\left\langle(\sigma^\alpha\sigma^\beta)^2\right\rangle\right\}\right]\\ \approx&\exp\left[N\log\left(\int_{-\infty}^{+\infty}\prod_{\alpha}d\sigma^\alpha e^{\beta H_{\text{eff}}}\right)-N\frac{(\beta J)^2}{8N}p(p-1)\sum_{\alpha\beta}q_{\alpha\beta}^{p-2}\left\langle(\sigma^\alpha\sigma^\beta)^2\right\rangle\right] \end{align*} 이고, 지수 위의 첫 번째 항은 가우스 적분 $$\int\prod_\alpha d\sigma_\alpha\exp\left[-\frac12\vec\sigma\cdot\mathbf A\cdot\vec\sigma+\mathbf J\cdot\vec\sigma\right] = \sqrt{\frac{(2\pi)^n}{\det\Lambda}}\exp\left[-\frac12\mathbf J\cdot \mathbf A^{-1}\cdot\mathbf J\right]$$ 를 이용해 $J_i = \beta J$, $\mathbf A = -\tilde\Lambda$로 두고 다음과 같이 계산할 수 있다. \begin{align*} &\log\left(\int_{-\infty}^{+\infty}\prod_{\alpha}d\sigma^\alpha e^{\beta H_{\text{eff}}}\right)=\log\left(\int_{-\infty}^{+\infty}\prod_{\alpha}d\sigma^\alpha \exp\left[\frac12\sum_{\alpha\beta}\lambda_{\alpha\beta}\sigma^\alpha\sigma^\beta+\beta h\sum_{\alpha}\sigma^\alpha\right]\right)\\ =&n\log(2\pi)-\log\det(-\tilde\Lambda)-\frac{(\beta J)^2}2\sum_{\alpha\beta}(\tilde\Lambda^{-1})_{\alpha\beta} \end{align*} 여기서 $(\tilde\Lambda)_{\alpha\beta}=\lambda_{\alpha\beta}$이다. 따라서 분배함수는 $$ \overline{Z^n}=\int\prod_{\alpha<\beta}dq_{\alpha\beta}\int_{-i\infty}^{+i\infty}\prod_{\alpha<\beta}\frac N{2\pi i}d\lambda_{\alpha\beta}\int_{-i\infty}^{+i\infty}\prod_\alpha\frac{d\lambda_{\alpha\alpha}}{4\pi i} e^{-NG[\mathbf q,\lambda]} $$ 가 된다. 여기서 $$G[\mathbf q,\lambda] = -\frac 12\sum_{\alpha\beta}\lambda_{\alpha\beta}q_{\alpha\beta}+\frac{(\beta J)^2}4\sum_{\alpha\beta}q_{\alpha\beta}^p-n\log(2\pi)-\frac{(\beta J)^2}{8N}p(p-1)\sum_{\alpha\beta}q_{\alpha\beta}^{p-2}\left\langle(\sigma^\alpha\sigma^\beta)^2\right\rangle+\log\det(-\tilde\Lambda)+\frac{(\beta J)^2}2\sum_{\alpha\beta}(\tilde\Lambda^{-1})_{\alpha\beta}$$ 이다.