물리:차원분석

This is an old revision of the document!


차원과 단위

물리량들은 길이($L$), 질량($M$), 시간($T$), 혹은 이들을 조합한 속성을 가진다. 우리는 위의 세 가지를 물리량의 기본차원이라고 부를 것이다.

단위는 차원에 치수를 지정한 것으로 예컨대 미터는 길이의 단위이다. 우리는 보통 SI 단위계를 채용하여 미터($m$), 킬로그램($kg$), 초($s$)를 길이, 질량, 시간의 단위로 사용할 것이다.

예를 들어 힘은 질량과 가속도의 곱으로 차원은 [$MLT^{-2}$]이며 SI 단위계에서 [$kg \cdot m/s^2$]의 단위를 가지는데, 이 단위를 간단히 줄여서 뉴턴($N$)이라고 부른다.

차원의 동차성

$1 kg + 1 m$가 무의미한 계산이듯이, 물리의 모든 식에서 더하거나 빼는 항끼리는 같은 차원을 가지고 있어야만 한다.

예컨대 낙하하는 물체의 운동방정식 $$ \frac{d^2 z}{dt^2} + g = 0$$ 에서 좌변과 우변은 모두 가속도[$MLT^{-2}$]라는 공통의 차원을 가진다.

초기 위치 $z_0$와 초기 속도 $v_0$로부터 이 방정식을 푼 결과인 $$z = z_0 + v_0 t - \frac{1}{2} gt^2$$ 에서도 모든 항은 길이[$L$]의 차원을 가지고 있음을 확인할 수 있다.

위에서 예로 든 낙하 문제에 어떤 길이 척도 $\lambda$와 시간 척도 $\tau$가 존재한다고 해보자 (예컨대, $\lambda=1m$이고 $\tau = 1s$).

$z' = z/\lambda$로, $t' = t/\tau$로 놓는다면 위 방정식을 $$ \frac{d^2 z'}{d{t'}^2} = - \frac{g\tau^2}{\lambda}$$ 로 고쳐쓸 수 있다. 이 때에 우변은 차원이 없는 무차원수이다. 무차원수는 단위계를 바꾸어도 그 값이 변하지 않는다.

만일 $\tau$가 10배가 된다면 $\lambda$는 100배가 되었을 때에 이 무차원수가 변하지 않을 것이다. 그러한 동일한 무차원수를 가지는 현상들은 적절히 확대 혹은 축소해서 보았을 때에 구분되지 않을 것이다. 따라서 $g\tau^2/\lambda$라는 숫자를 한 덩어리로 간주해서 이 양을 통해 현상들을 분류하는 것도 생각할 수 있다.

즉 서로 다른 중력가속도 하에서, 서로 다른 시간 $\tau$ 동안 서로 다른 거리 $\lambda$를 낙하하는 물체의 궤적들 $z(t)$를을 그린다고 상상해보자. 가로축을 $t/\tau$로 그리고 세로축을 $z/\lambda$로 그리면 $g\tau^2/\lambda$가 일치하는 물체들의 궤적끼리는 정확하게 겹칠 것이다. 수학적으로 정리해서 써보면, 어떤 함수 $f$가 있어서 $$\frac{z}{\lambda} = f \left(\frac{t}{\tau}, \frac{g\tau^2}{\lambda} \right)$$ 처럼 쓸 수 있으리라는 이야기이다. 처음의 운동방정식만 생각하면 $z$가 $t, g, \tau, \lambda$ 등 연관된 모든 변수에 의존할 것처럼 보이지만 실제 독립변수의 수는 훨씬 적다. 무차원수끼리의 함수 관계가 성립한다는 점에 유의하라.

영화에서 미니어처를 만든 다음 고속 촬영을 통해 주위 물체가 천천히 떨어지는 것처럼 하면 마치 거대한 물체를 찍은 것처럼 눈속임할 수 있는데, 이것도 $\tau$와 $\lambda$를 적절히 조정해 무차원수의 값을 같게 만듦으로써 미니어처와 거대한 물체를 구분할 수 없도록 눈속임하는 것이다. 실험에서는 이러한 것을 시늉내기(simulation)라고 부른다.

이러한 무차원수의 분석은 통계역학과 유체역학과 같은 분야에서 정확한 운동 방정식을 세울 수조차 없는 복잡한 경우에도 종종 유용한 길잡이가 되어준다.

동물의 보행 속력 $s$가 다리 길이 $L$과 중력가속도 $g$에 의해 결정된다고 가정하자. 이로부터 만들어낼 수 있는 무차원수는$s/\sqrt{lg}$이다. 나아가 보폭을 $S$라고 했을 때 $S/L$도 무차원수이다. $$ S/L = f(s/\sqrt{Lg})$$ 라고 가정하고 여러 동물들에 대해 이 관계를 시험해보면 실제 상당히 깨끗한 선형 관계를 발견할 수 있다. 이 관계식으로부터 공룡의 보행속력을 추정해볼 수 있다.

참고문헌

  • John C. Cimbala and Yunus A. Çengel, 박운진 (외) 옮김, Cimbala & Çengel의 유체역학, (지필, 서울, 2013).
  • 물리/차원분석.1455112287.txt.gz
  • Last modified: 2023/09/05 15:46
  • (external edit)