This is an old revision of the document!
의미
열역학의 관점에서 계가 주고받는 양이 에너지일 때 열평형, 부피일 때 역학적 평형, 입자일 때 확산 평형이 이루어진다.
열평형을 위주로 설명하면, 우리가 보는 계가 고립되어 주위 환경과 에너지를 주고받지 못한다고 가정하자. 역학에 의하면 이 계의 내부 에너지 $U$가 보존되므로, 계가 취할 수 있는 모든 미시 상태에서 $U$가 같은 값으로 유지될 것이다. 그러나 대개 굉장히 많은 수의 미시 상태가 이 $U$의 값에 대응될 수 있고, 계는 이 미시 상태들에 대해 어떤 확률 분포를 가지게 될 것이다. 평형은 이 확률 분포가 시간에 무관하게 일정하다는 사실로 특징 지을 수 있다. 따라서 이 계를 기술하는 거시적인 변수들 역시 시간에 대해 불변일 것이다.
어떤 계의 거시 변수가 시간에 대해 불변한다는 이유로 반드시 평형인 것은 아니다. 이 계와 환경을 합쳐서 만들어진 전체 고립계가 평형에 있지 않을 수도 있기 때문이다. 이는 일반적으로 정상 상태(steady state)라고 불린다. 즉 정상 상태는 평형보다 넓은 개념이고, 평형은 정상 상태의 특별한 경우이다. 예컨대 구리 막대의 한 쪽을 램프로 가열하고 반대쪽을 대기 중에 둔다면, 막대를 따라 열의 흐름이 시간에 대해 일정해지면서 정상상태에 도달한다. 그러나 전체 계를 생각해보면 램프와 대기가 모두 변하는 과정에 있으므로 평형이 아니다.
중요성
평형 상태에서는 압력 $p$, 온도 $T$ 등의 상태 함수들을 안정되게 정의할 수 있다. 이들 사이의 관계식인 상태 방정식을 알면 거시적인 측정 결과들을 예측 가능하게 연결지을 수 있다.
일반적으로 $N$개의 입자를 가지는 계의 상태를 기술하기 위해서는 $6N$ 개에 해당하는 자유도가 필요하다는 사실을 떠올려보자. 이는 미시 상태라 불리는 것으로서, $N$이 아보가드로 수에 육박한다면 이런 식의 기술은 바로 효용성을 잃는다. 반면에 거시 변수들의 숫자는 $6N$에 비해서 매우 적다.
거꾸로 계가 비평형 상태에 놓이게 되면 계의 상태를 제대로 기술하기 위해 필요한 자유도의 수가 폭발적으로 늘어날 수 있다.
참고문헌
- Federick Reif, [Fundamentals of Statistical and Thermal Physics] (1965), pp. 53-54; ibid., p. 462.
- Robert H. Swendsen, [An Introduction to Statistical Mechanics and Thermodynamics] (Oxford University Press, Oxford, 2012), pp. 103-104.
- Daniel V. Schroeder, [An Introduction to Thermal Physics] (Addison Wesley Longman, San Francisco, 2000), p. 2.