물리:랑주뱅_방정식

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
물리:랑주뱅_방정식 [2016/04/06 18:23] – [확산 계수] admin물리:랑주뱅_방정식 [2023/09/05 15:46] (current) – external edit 127.0.0.1
Line 28: Line 28:
 $\left< x^2 \right> \approx \frac{2k_B T}{\alpha} t$이다. 확산 계수 $D$를 $\left< x^2 \right> \approx 2Dt$라 적으므로, 결론적으로 $D = \alpha^{-1} k_B T$이다. 이것이 아인슈타인 관계식이다. $\left< x^2 \right> \approx \frac{2k_B T}{\alpha} t$이다. 확산 계수 $D$를 $\left< x^2 \right> \approx 2Dt$라 적으므로, 결론적으로 $D = \alpha^{-1} k_B T$이다. 이것이 아인슈타인 관계식이다.
  
-======요동-흩어지기 정리====== +======요동-흩어지기 정리 (Fluctuation-Dissipation Theorem)====== 
-=====그린-쿠보(Green-Kubo) 공식=====+=====1종 요동-흩어지기 정리 (그린-쿠보 관계)=====
 매우 작은 시간 $\tau$를 가지고 $\dot{v}(t) \approx \tau^{-1} \left[ v(t+\tau) - v(t) \right]$라고 쓸 수 있다. 매우 작은 시간 $\tau$를 가지고 $\dot{v}(t) \approx \tau^{-1} \left[ v(t+\tau) - v(t) \right]$라고 쓸 수 있다.
 이 식을 랑주뱅 방정식에 대입하고 양변에 어떤 초기 시점의 $v(0)$를 곱하면 아래의 식을 얻는다: 이 식을 랑주뱅 방정식에 대입하고 양변에 어떤 초기 시점의 $v(0)$를 곱하면 아래의 식을 얻는다:
Line 38: Line 38:
 $$ \int_0^{\infty} dt \left< v(0) v(t) \right> = \alpha^{-1} k_B T = D$$ $$ \int_0^{\infty} dt \left< v(0) v(t) \right> = \alpha^{-1} k_B T = D$$
 를 얻는다. 일정한 힘 $F$가 주어졌을 때에 종단 속도가 $v=\alpha^{-1} F$이기 때문에 이동도 $\alpha^{-1}$를 일종의 응답 함수로 볼 수 있다. 따라서 위의 관계식은 입자 속도 $v$의 요동과 응답을 관계짓는 식이다. 물론 이 때의 암묵적인 가정은 우리가 가한 힘에도 불구하고 전체 계가 여전히 평형에 매우 가까이 머무르고 있다는 것이다. 를 얻는다. 일정한 힘 $F$가 주어졌을 때에 종단 속도가 $v=\alpha^{-1} F$이기 때문에 이동도 $\alpha^{-1}$를 일종의 응답 함수로 볼 수 있다. 따라서 위의 관계식은 입자 속도 $v$의 요동과 응답을 관계짓는 식이다. 물론 이 때의 암묵적인 가정은 우리가 가한 힘에도 불구하고 전체 계가 여전히 평형에 매우 가까이 머무르고 있다는 것이다.
- +=====2종 요동-흩어지기 정리=====
-=====아인슈타인 관계식=====+
 서로 다른 시점의 $F$가 아무 관계도 없어서 $\left< F(t) F(t') \right> = A \delta (t-t')$이라고 해보자. 이 때 계수 $A$는 이 요동의 세기를 특징지어주는 양이다. 랑주뱅 방정식은 기본적으로 $v$에 대한 1차 미분방정식이므로 그 답을 바로 아래처럼 적을 수 있다: 서로 다른 시점의 $F$가 아무 관계도 없어서 $\left< F(t) F(t') \right> = A \delta (t-t')$이라고 해보자. 이 때 계수 $A$는 이 요동의 세기를 특징지어주는 양이다. 랑주뱅 방정식은 기본적으로 $v$에 대한 1차 미분방정식이므로 그 답을 바로 아래처럼 적을 수 있다:
 $$v(t) = e^{-\alpha t/m} v(0) + \int_0^t dt' e^{-\alpha(t-t')/m} F(t')/m.$$ $$v(t) = e^{-\alpha t/m} v(0) + \int_0^t dt' e^{-\alpha(t-t')/m} F(t')/m.$$
Line 46: Line 45:
 가정에 의해 $\left< F(t') F(t'') \right> = A \delta (t'-t'')$를 대입하고 적분을 수행하면 가정에 의해 $\left< F(t') F(t'') \right> = A \delta (t'-t'')$를 대입하고 적분을 수행하면
 $$\left< v(t)^2 \right> = e^{-2\alpha t/m} \left< v(0)^2 \right> + e^{-2\alpha t/m} \frac{A}{2m\alpha} \left(e^{2\alpha t/m}-1 \right)$$ $$\left< v(t)^2 \right> = e^{-2\alpha t/m} \left< v(0)^2 \right> + e^{-2\alpha t/m} \frac{A}{2m\alpha} \left(e^{2\alpha t/m}-1 \right)$$
-이다. 시간이 충분히 흘러서 $t \gg m/\alpha$이라면 따라서 $\left<v(t)^2 \right> = \frac{A}{2m\alpha}$인데, 만일 이 때에 열적 평형에 있다면 이것이 $\frac{k_B T}{m}$과 일치해야 한다. 그러므로 $A = 2 \alpha k_B T$라는 결론을 얻는다. 이는 랑주뱅 방정식의 우변 첫 번째 항에 등장하는 $\alpha$와 두 번째 항의 요동 세기 $A$가 평형에서 독립적이지 않다는 뜻이다. +이다. 시간이 충분히 흘러서 $t \gg m/\alpha$이라면 따라서 $\left<v(t)^2 \right> = \frac{A}{2m\alpha}$인데, 만일 이 때에 열적 평형에 있다면 이것이 $\frac{k_B T}{m}$과 일치해야 한다. 그러므로 $A = 2 \alpha k_B T$라는 결론을 얻는다. 이는 랑주뱅 방정식의 우변 첫 번째 항에 등장하는 $\alpha$와 두 번째 항의 요동 세기 $A$가 평형에서 독립적이지 않다는 뜻이다. 정리하면, 다음의 식이 성립한다: 
- +$$\alpha = \frac{A}{2k_B T} = \frac{1}{k_B T} \int_0^\infty dt \left< F(t) F(0) \right>.$$ 
 +마지막의 적분 표현식은 [[수학:디락 델타 함수]]의 성질로부터 자연스럽게 유도된다.
 ======비가역성====== ======비가역성======
  
Line 54: Line 53:
 [[물리:칼데이라-레겟 모형]] [[물리:칼데이라-레겟 모형]]
  
- +[[물리:포커-플랑크 방정식]] 
-======참고 문헌====== +======참고문헌====== 
-  *F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw-Hill, NY, 1965). +  *F. Reif, //Fundamentals of Statistical and Thermal Physics// (McGraw-Hill, NY, 1965). 
-  *가와자키 쿄지 지음, 김봉수,이호섭 옮김, 비평형과 상전이 - 메조스케일의 통계물리학 (청문각, 서울, 2000).+  *가와자키 쿄지 지음, 김봉수,이호섭 옮김, //비평형과 상전이 - 메조스케일의 통계물리학// (청문각, 서울, 2000).
   *[[https://www.apctp.org/plan.php/statws2013|The 10th KIAS-APCTP Winter School on Statistical Physics]]   *[[https://www.apctp.org/plan.php/statws2013|The 10th KIAS-APCTP Winter School on Statistical Physics]]
   *[[https://www.apctp.org/plan.php/statws2016|The 13th KIAS-APCTP Winter School on Statistical Physics]]   *[[https://www.apctp.org/plan.php/statws2016|The 13th KIAS-APCTP Winter School on Statistical Physics]]
-  *S. J. Blundell and K. M. Blundell, Concepts in Thermal Physics, 2nd ed. (Oxford Univ. Press, Oxford, 2010).+  *S. J. Blundell and K. M. Blundell, //Concepts in Thermal Physics//, 2nd ed. (Oxford Univ. Press, Oxford, 2010).
  • 물리/랑주뱅_방정식.1459936398.txt.gz
  • Last modified: 2023/09/05 15:46
  • (external edit)