물리:복제_대칭성_깨짐_해

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
물리:복제_대칭성_깨짐_해 [2022/12/13 20:25] – [1차 복제 대칭성 깨짐] admin물리:복제_대칭성_깨짐_해 [2023/09/05 15:46] (current) – external edit 127.0.0.1
Line 141: Line 141:
 m_1 = \frac{2\sqrt{\ln 2}}{\beta J} \frac{1}{\sqrt{1-(1-q_1)^2}} m_1 = \frac{2\sqrt{\ln 2}}{\beta J} \frac{1}{\sqrt{1-(1-q_1)^2}}
 \end{equation} \end{equation}
-을 결정할 수 있다.+을 결정할 수 있다. 이 식은 $T \to 0$에서 $m_1 \to 0$임을 보여준다. 
 + 
 +앞에서 [[물리:복제 대칭 해|복제대칭성을 가정했을 때]]와 마찬가지로 $q_1 = 1-aT$라고 가정하자. 
 +온도 $T$를 충분히 작게 잡은 후 적절한 초기값, 예를 들어 $m=0$과 $q_1=1$에서 출발하여, $m_1$에 대한 위의 식과 $q_1$에 대한 아래의 식 
 +\begin{equation} 
 +q_1 = \int Du \frac{\int Dv \cosh^{m_1}\left(\beta J \sqrt{q_1}\right) \tanh^2 \left(\beta J \sqrt{q_1}\right)}{\int Dv \cosh^{m_1}\left(\beta J \sqrt{q_1}\right)} 
 +\end{equation} 
 +을 반복해서 적용함으로써 수렴되는 해 $(m_1, q_1)$를 찾고 $a$의 크기를 가늠할 수 있다. [[물리:복제 대칭 해|복제대칭성을 가정했을 때]]와 마찬가지 근사를 써서 $-\beta [f]$를 적은 후 엔트로피 부분을 $a$의 함수로 적어보면 $S \approx J^2 a^2 / (4k_B) - Ja/\sqrt{2\pi}$이다. 여기에 방금 구한 $a$를 대입하면 $S \approx -0.04 k_B$를 얻는다. 이는 여전히 음수여서 물리적이지 않지만, [[물리:복제 대칭 해]]의 $-0.16k_B$에 비해 개선된 값이다. (계산된 엔트로피 값은 [[https://arxiv.org/abs/1506.07128|이 문서]]의 Fig. 3과 부합한다.) 
 + 
 ====해의 안정성==== ====해의 안정성====
 1차 복제 대칭성 깨짐 해의 안정성은 이전과 마찬가지로 헤세 행렬의 세 번째 고윳값 $\lambda_3 = P-2Q-R$의 부호를 통해 결정할 수 있다. $J_0=h=0$로 둘 것이고, 다음 몇 가지 경우를 확인해보자. 1차 복제 대칭성 깨짐 해의 안정성은 이전과 마찬가지로 헤세 행렬의 세 번째 고윳값 $\lambda_3 = P-2Q-R$의 부호를 통해 결정할 수 있다. $J_0=h=0$로 둘 것이고, 다음 몇 가지 경우를 확인해보자.
  • 물리/복제_대칭성_깨짐_해.txt
  • Last modified: 2023/09/05 15:46
  • by 127.0.0.1