물리:복제_대칭성_깨짐_해

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
물리:복제_대칭성_깨짐_해 [2022/12/12 16:27] – [1차 복제 대칭성 깨짐] admin물리:복제_대칭성_깨짐_해 [2023/09/05 15:46] (current) – external edit 127.0.0.1
Line 108: Line 108:
 \end{eqnarray} \end{eqnarray}
  
-[[수학:코시-슈바르츠 부등식]]에 의해 $q_1 \ge q_0$이다. $m_1$에 대해서도 최소화가 되어야 하지만 이 계산은 뒤에 쓰이지 않으므로 생략한다.+[[수학:코시-슈바르츠 부등식]]에 의해 $q_1 \ge q_0$이다. $m_1$에 대해서도 최소화가 되어야 한다.
  
 $J_0=h=0$일 때 $\Xi$는 $u$, $v$에 대해 홀함수이므로, 위 적분 표현식으로부터 $m=0$임을 알 수 있다. $J_0=h=0$일 때 $\Xi$는 $u$, $v$에 대해 홀함수이므로, 위 적분 표현식으로부터 $m=0$임을 알 수 있다.
Line 131: Line 131:
 I \equiv \int Dz \left[ 2\cosh\left(z \lambda)\right) \right]^{m_1} I \equiv \int Dz \left[ 2\cosh\left(z \lambda)\right) \right]^{m_1}
 \end{equation} \end{equation}
-이라 할 때 $\lim_{\lambda \to \infty} I = 2\exp(m_1^2 \lambda^2/2)$이므로+이라 할 때 $2\cosh(x) \approx \exp [x \times \text{sgn}(x)]$임을 통해 $\lim_{\lambda \to \infty} I = 2\exp(m_1^2 \lambda^2/2)$이므로 
 +\begin{eqnarray} 
 +\beta f_\text{1RSB} &\approx& \frac{\beta^2 J^2}{4} \left[ (m_1-1)q_1^2 + 2q_1 -1 \right] - \frac{1}{m_1} \int Du \ln \left\{ 2\exp(m_1^2 \beta^2 J^2 q_1/2) \right\}\\ 
 +&=& \frac{\beta^2 J^2}{4} \left[ (m_1-1)q_1^2 + 2q_1 -1 \right] - \frac{\beta^2 J^2}{2} m_1 q_1 - \frac{\ln 2}{m_1}. 
 +\end{eqnarray} 
 + 
 +$m_1$으로 미분했을 때 0이 되는 조건으로부터
 \begin{equation} \begin{equation}
-\beta f_\text{1RSB\approx \frac{\beta^2 J^2}{4\left[ (m_1-1)q_1^2 + 2q_1 -1 \right] - \frac{1}{m_1} \int Du \ln \left\{ 2\exp(m_1^2 \beta^2 J^2 q_1/2) \right\}.+m_1 = \frac{2\sqrt{\ln 2}}{\beta J} \frac{1}{\sqrt{1-(1-q_1)^2}}
 \end{equation} \end{equation}
 +을 결정할 수 있다. 이 식은 $T \to 0$에서 $m_1 \to 0$임을 보여준다.
 +
 +앞에서 [[물리:복제 대칭 해|복제대칭성을 가정했을 때]]와 마찬가지로 $q_1 = 1-aT$라고 가정하자.
 +온도 $T$를 충분히 작게 잡은 후 적절한 초기값, 예를 들어 $m=0$과 $q_1=1$에서 출발하여, $m_1$에 대한 위의 식과 $q_1$에 대한 아래의 식
 +\begin{equation}
 +q_1 = \int Du \frac{\int Dv \cosh^{m_1}\left(\beta J \sqrt{q_1}\right) \tanh^2 \left(\beta J \sqrt{q_1}\right)}{\int Dv \cosh^{m_1}\left(\beta J \sqrt{q_1}\right)}
 +\end{equation}
 +을 반복해서 적용함으로써 수렴되는 해 $(m_1, q_1)$를 찾고 $a$의 크기를 가늠할 수 있다. [[물리:복제 대칭 해|복제대칭성을 가정했을 때]]와 마찬가지 근사를 써서 $-\beta [f]$를 적은 후 엔트로피 부분을 $a$의 함수로 적어보면 $S \approx J^2 a^2 / (4k_B) - Ja/\sqrt{2\pi}$이다. 여기에 방금 구한 $a$를 대입하면 $S \approx -0.04 k_B$를 얻는다. 이는 여전히 음수여서 물리적이지 않지만, [[물리:복제 대칭 해]]의 $-0.16k_B$에 비해 개선된 값이다. (계산된 엔트로피 값은 [[https://arxiv.org/abs/1506.07128|이 문서]]의 Fig. 3과 부합한다.)
 +
  
 ====해의 안정성==== ====해의 안정성====
  • 물리/복제_대칭성_깨짐_해.1670830052.txt.gz
  • Last modified: 2023/09/05 15:46
  • (external edit)