물리:이징_모형_husimi_트리_kagome_격자

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revisionBoth sides next revision
물리:이징_모형_husimi_트리_kagome_격자 [2023/09/21 15:38] minwoo물리:이징_모형_husimi_트리_kagome_격자 [2023/10/20 23:40] minwoo
Line 37: Line 37:
  
 $$  $$ 
-g_n(\sigma_0) = \sum_{\{\sigma_1\}} \exp\Bigg[\beta\Bigg(J_3\sum_\Delta \sigma_0\sigma_1^{(1)} \sigma_2^{(2)} + J_2 \sum_{\text{n.n}}\sigma_0 \sigma_1 + h \sum _{j=1,2}\sigma_1^{(j)} \Bigg) \Bigg][g_{n-1}(\sigma_1^{(1)})]^{\gamma-1}[g_{n-1}(\sigma_1^{(2)})]^{\gamma-1}+g_n(\sigma_0) = \sum_{\{\sigma_1\}} \exp\Bigg[\beta\Bigg(J_3\sum_\Delta \sigma_0\sigma_1^{(1)} \sigma_1^{(2)} + J_2 \sum_{\text{n.n}}\sigma_0 \sigma_1 + h \sum _{j=1,2}\sigma_1^{(j)} \Bigg) \Bigg][g_{n-1}(\sigma_1^{(1)})]^{\gamma-1}[g_{n-1}(\sigma_1^{(2)})]^{\gamma-1}
 $$ $$
  
Line 45: Line 45:
 이러한 방식의 정의는 Husimi 트리가 트리 구조를 가지기에 가능한 것이다. 그에 따라, 분배함수 $Z=\sum_\sigma P(\sigma)$를 다음과 같이 적을 수 있다. 이러한 방식의 정의는 Husimi 트리가 트리 구조를 가지기에 가능한 것이다. 그에 따라, 분배함수 $Z=\sum_\sigma P(\sigma)$를 다음과 같이 적을 수 있다.
  
-$$ Z = \sum_{\sigma_0} \exp(\beta h\sigma_0) [g_n(\sigma_0)]^{(\gamma-1)} $$+$$ Z = \sum_{\sigma_0} \exp(\beta h\sigma_0) [g_n(\sigma_0)]^{\gamma} $$
  
 따라서,  따라서, 
  
 $$ $$
-\langle \sigma_0 \rangle = Z^{-1} \sum_{\sigma_0} \sigma_0 \exp (\beta h\sigma_0 )[g_n(\sigma_0)]^{(\gamma-1)}+\langle \sigma_0 \rangle = Z^{-1} \sum_{\sigma_0} \sigma_0 \exp (\beta h\sigma_0 )[g_n(\sigma_0)]^{\gamma}
 $$ $$
 로 쓸 수 있다. 로 쓸 수 있다.
Line 66: Line 66:
 $$ $$
 \begin{align} \begin{align}
-\langle \sigma_0 \rangle &= \frac{\sum_{\sigma_0}\sigma_0 \exp(\beta h\sigma_0) [g_n(\sigma_0)]^{(\gamma-1)}}{Z} \\+\langle \sigma_0 \rangle &= \frac{\sum_{\sigma_0}\sigma_0 \exp(\beta h\sigma_0) [g_n(\sigma_0)]^{\gamma}}{Z} \\
  
-&= \frac{e^{\beta h}g_n(+)^{(\gamma-1)}\  - \ e^{-\beta h}g_n(-)^{(\gamma-1)}}{e^{\beta h}g_n(+)^{(\gamma-1)}\  + \ e^{-\beta h}g_n(-)^{(\gamma-1)}} \\ +&= \frac{e^{\beta h}g_n(+)^{\gamma}\  - \ e^{-\beta h}g_n(-)^{\gamma}}{e^{\beta h}g_n(+)^{\gamma}\  + \ e^{-\beta h}g_n(-)^{\gamma}} \\ 
-&= \frac{e^{2\beta h}g_n(+)^{(\gamma-1)} \ -g_n(-)^{(\gamma-1)}}{e^{2\beta h}g_n(+)^{(\gamma-1)} \ +g_n(-)^{(\gamma-1)}} \\ +&= \frac{e^{2\beta h}g_n(+)^{\gamma} \ -g_n(-)^{\gamma}}{e^{2\beta h}g_n(+)^{\gamma} \ +g_n(-)^{\gamma}} \\ 
-&= \frac{az_n^{(\gamma-1)} \ -1}{az_n^{(\gamma-1)} \ +1} +&= \frac{az_n^{\gamma} \ -1}{az_n^{\gamma} \ +1} 
 \end{align} \end{align}
 $$ $$
Line 83: Line 83:
  
 $$  $$ 
-g_n(\sigma_0) = \sum_{\{\sigma_1\}} \exp\Bigg[\beta\Bigg(J_3\sum_\Delta \sigma_0\sigma_1^{(1)} \sigma_2^{(2)} + J_2 \sum_{\text{n.n}}\sigma_0 \sigma_1 + h \sum _{j=1,2}\sigma_1^{(j)} \Bigg) \Bigg][g_{n-1}(\sigma_1^{(1)})]^{\gamma-1}[g_{n-1}(\sigma_1^{(2)})]^{\gamma-1}+g_n(\sigma_0) = \sum_{\{\sigma_1\}} \exp\Bigg[\beta\Bigg(J_3\sum_\Delta \sigma_0\sigma_1^{(1)} \sigma_1^{(2)} + J_2 \sum_{\text{n.n}}\sigma_0 \sigma_1 + h \sum _{j=1,2}\sigma_1^{(j)} \Bigg) \Bigg][g_{n-1}(\sigma_1^{(1)})]^{\gamma-1}[g_{n-1}(\sigma_1^{(2)})]^{\gamma-1}
 $$ $$
  
Line 180: Line 180:
 이를 통해, $$ 이를 통해, $$
 \begin{align} \begin{align}
-\langle \sigma_0 \rangle= \frac{az_n^{(\gamma-1)} \ -1}{az_n^{(\gamma-1)} \ +1} +\langle \sigma_0 \rangle= \frac{az_n^{\gamma} \ -1}{az_n^{\gamma} \ +1} 
 \end{align} \end{align}
 $$ $$
  • 물리/이징_모형_husimi_트리_kagome_격자.txt
  • Last modified: 2023/11/15 17:03
  • by minwoo