물리:2차원_이징_모형

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revisionBoth sides next revision
물리:2차원_이징_모형 [2022/01/16 21:09] – [반교환자] admin물리:2차원_이징_모형 [2022/07/28 13:30] – [참고문헌] admin
Line 282: Line 282:
 =====자유에너지===== =====자유에너지=====
 다시 작용을 적어보면 다시 작용을 적어보면
 +$$S = \frac{1}{2\pi} \int d^2 x (\varphi \bar{\partial} \varphi + \bar{\varphi} \partial \bar{\varphi} + im\bar{\varphi} \varphi)$$
 +이며, 여기에서 미분연산자는 반대칭행렬로 나타낼 수 있음에 유의할 것. 예를 들어 간격 $\Delta$로 $N$개의 입자가 늘어서 있는 길이 $L=N\Delta$의 1차원 계를 생각한다면
 \begin{eqnarray} \begin{eqnarray}
-&=& \frac{1}{2} \int d^2 x (\varphi \partial \bar{\varphi+ \bar{\varphi} \partial \bar{\varphi} + im\bar{\varphi} \varphi)\\ +&&\int dx \left( \frac{1}{2}\varphi \partial_1 \varphi + \frac{1}{2}\bar{\varphi} \partial_1 \bar{\varphi} + im\bar{\varphi} \varphi \right) 
-&=\frac{1}{2} \int d^2 x \begin{pmatrix} \varphi & \bar{\varphi} \end{pmatrix} +\approx \sum_{j=0}^{N-1} \frac{1}{2} \varphi_j \left( \frac{\varphi_{j+1} - \varphi_{j-1}}{2\Delta} \right) + \frac{1}{2} \bar{\varphi}_j \left( \frac{\bar{\varphi}_{j+1\bar{\varphi}_{j-1}}{2\Delta} \right) + im \bar{\varphi}_j \varphi_j\\ 
-\begin{pmatrix} +&=& \begin{pmatrix} \varphi_0 & \varphi_1 & \cdots & \varphi_{N-1} & \bar{\varphi}_0 & \bar{\varphi}_1 & \cdots & \bar{\varphi}_{N-1} \end{pmatrix} 
-\bar{\partial& -im/2 \\ +\left( \begin{array}{cccccc|cccccc
-im/2 & \partial +0 & \frac{1}{4\Delta& 0 & \cdots & 0 & -\frac{1}{4\Delta} -\frac{im}{2& 0 & 0 & 0 & \cdots & 0\\ 
-\end{pmatrix} +-\frac{1}{4\Delta& 0 & \frac{1}{4\Delta} & \cdots 0 & 0 & -\frac{im}{2} & 0 & 0 & \cdots & 0\\ 
-\begin{pmatrix} \varphi \\ \bar{\varphi} \end{pmatrix}\\ +\vdots & & & \ddots & & & \vdots & & & & \ddots & \vdots \\ 
-&\sim& +\frac{1}{4\Delta& 0 & 0 & \cdots & -\frac{1}{4\Delta} & 0 & 0 & 0 & 0 & 0 & \cdots & -\frac{im}{2}\\\hline 
-\frac{1}{2} \sum_x \begin{pmatrix} \varphi & \bar{\varphi} \end{pmatrix} +\frac{im}{2& 0 & 0 & \cdots & 0 & 0 & \frac{1}{4\Delta} & & \cdots & 0 & -\frac{1}{4\Delta}\\ 
-\begin{pmatrix+\frac{im}{2} & 0 & 0 & \cdots & 0 & -\frac{1}{4\Delta} & 0 & \frac{1}{4\Delta} & \cdots & 0 & 0\\ 
-\bar{\partial} & -im/2 \\ +\vdots & & & \ddots & & \vdots & \vdots & & & & \ddots & \vdots \\ 
-im/2 & \partial +0 & 0 & 0 & 0 & \cdots & -\frac{im}{2} & \frac{1}{4\Delta} & 0 & 0 & \cdots & -\frac{1}{4\Delta} & 0 
-\end{pmatrix} +\end{array}\right) 
-\begin{pmatrix} \varphi \\ \bar{\varphi} \end{pmatrix}\\ +\begin{pmatrix} \varphi_0 \\ \varphi_1 \\ \vdots \\ \varphi_{N-1} \\ \bar{\varphi}_0 \\ \bar{\varphi}_1 \\ \vdots \\ \bar{\varphi}_{N-1} \end{pmatrix}\\ 
-&=& +&=-\frac{1}{2} \sum_{\alpha=0}^{2N-1} \sum_{\beta=0}^{2N-1} \tilde{\varphi}_\alpha \Lambda_{\alpha\beta} \tilde{\varphi}_\beta.
-\frac{1}{2}  +
-\begin{pmatrix} \varphi_{x_1} & \bar{\varphi}_{x_1} & \varphi_{x_2& \bar{\varphi}_{x_2} & \cdots \end{pmatrix} +
-\begin{pmatrix} +
-\bar{\partial} & -im/2 & 0 & 0 & \cdots \\ +
-im/2 & \partial & 0 & 0 & \cdots\\ +
-0 & 0 & \bar{\partial} & -im/2 & \cdots\\ +
-& 0 & im/2 & \partial & \cdots\\ +
-\vdots & \vdots & \vdots & \vdots & \ddots +
-\end{pmatrix+
-\begin{pmatrix} \varphi_{x_1} \\ \bar{\varphi}_{x_1} \\ \varphi_{x_2} \\ \bar{\varphi}_{x_2\\ \vdots \end{pmatrix}\\ +
-&\rightarrow& \frac{1}{2} \Psi(\varphi\Lambda \Psi(\varphi)+
 \end{eqnarray} \end{eqnarray}
-며 이것을 지수함수 위에 올려 적분하는 분배함수는 +여기에서는 중심미분을 사용했지만 앞에서와 일관되게 $\partial_1 \varphi \approx (\varphi_{j+1}-\varphi_j)/\Delta$를 사용해도 마찬가지다. 편의상 주기적 경계조건을 가정했다. 
-$$Z = \int D\varphi D\bar{\varphi} \exp(-S) = \prod_i \text{Pfaff} \Lambda_i.$$ + 
-그러므로 여기에 로그를 취하면+이것을 지수함수 위에 올려 적분하는 분배함수는 
 +$$Z = \int D\tilde{\varphi} \exp(-S) = \text{Pfaff}\Lambda = \prod_{n=0}^{N-1} \left( \frac{1}{\Delta^2} \sin^2 k_n \Delta + m^2 \right)^{1/2} \xrightarrow[\Delta \to 0]{} \prod_{n=0}^{N-1} \left( k_n^2 + m^2 \right)^{1/2}$$ 
 + 
 +2차원 문제로 돌아와서 $k^2=k_x^2 +k_y^2$으로 일반화하고 $Z$에 로그를 취하면
 \begin{eqnarray} \begin{eqnarray}
--\beta &=& \ln Z \sum_i \ln \text{Pfaff} \Lambda_i\\ +-\beta &=& \frac{1}{L^2} \ln Z 
-&\approx& \int d^2 \ln (p^2 + m^2)\\ +\propto \frac{1}{2} \int \frac{d^2 k}{(2\pi)^2} \ln (k^2 + m^2) 
-&=\int dp ~2\pi \ln (p^2 + m^2)\\ +\frac{1}{8\pi^2} \int dk ~2\pi \ln (k^2 + m^2)\\ 
-&=& \pi [(p^2+m^2) \ln(p^2+m^2) - p^2].+&=& \frac{1}{8\pi[(k^2+m^2) \ln(k^2+m^2) - k^2] 
 += \frac{1}{8\pi} m^2 \ln(m^2) + k^2 \ln(m^2) + O(k^4).
 \end{eqnarray} \end{eqnarray}
-$\to 0$에서 $-\beta \propto m^2 \ln m^2$이며 $m = 4(K-K_c)$이므로 $m$으로의 미분은 $K$로의 미분과 대응된다. 즉 $\frac{\partial^2 F}{\partial K^2} \propto \ln m^2$이 되어 비열이 임계점에서 로그 발산을 보인다.+장파장 영역($\to 0$)에서 $-\beta \propto m^2 \ln m^2$이며 $m = 4(K-K_c)$이므로 $m$으로의 미분은 $K$로의 미분과 대응된다. 즉 $\frac{\partial^2 f}{\partial K^2} \propto -\ln m^2$이 되어 비열이 임계점에서 로그 발산을 보인다.
  
  
 ======참고문헌====== ======참고문헌======
-  * Robert Savit, //Duality in field theory and statistical systems//, Rev. Mod. Phys. 52, 453 (1980)+  * Robert Savit, //Duality in field theory and statistical systems//, Rev. Mod. Phys. 52, 453 (1980).
   * //Ising Field Theory// by A. Zamolodchikov, https://www.weizmann.ac.il/complex/falkovich/courses   * //Ising Field Theory// by A. Zamolodchikov, https://www.weizmann.ac.il/complex/falkovich/courses
   * V. N. Plechko, J. Phys. Studies, 1, 554 (1997).   * V. N. Plechko, J. Phys. Studies, 1, 554 (1997).
 +  * https://gandhiviswanathan.wordpress.com/2018/10/31/exact-solution-of-the-2d-ising-model-via-grassmann-variables/
 +  * J.M Carmona, A. Di Giacomoa, and B. Lucini, //A disorder analysis of the Ising model//, Phys. Lett. B, 485, 126 (2000).
 +  * Massimo D’Elia and Luca Tagliacozzo, //Direct numerical computation of disorder parameters//, Phys. Rev. D 74, 114510 (2006).
  • 물리/2차원_이징_모형.txt
  • Last modified: 2023/09/05 15:46
  • by 127.0.0.1