물리:xy모형

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revisionBoth sides next revision
물리:xy모형 [2023/09/03 17:56] – [$i$와 $j$를 제외한 소용돌이들 주변으로의 적분] admin물리:xy모형 [2023/09/04 18:06] – [$i$와 $j$를 제외한 소용돌이들 주변으로의 적분] admin
Line 216: Line 216:
 $$ 2\pi \tau d\tau \int_{\overline{D}(i,j)} d\mathbf{r}_j \left\{ 1 + \beta^2 p^4 \sum_k \frac{\tau^2}{\left| \mathbf{r}_j - \mathbf{r}_k \right|^2} + \beta^2 p^2 \sum_{k \neq l} p_k p_l \frac{\tau^2 (\mathbf{r}_j - \mathbf{r}_k) \cdot (\mathbf{r}_j - \mathbf{r}_l)}{\left| \mathbf{r}_j - \mathbf{r}_k \right|^2 \left| \mathbf{r}_j - \mathbf{r}_l \right|^2} \right\}$$ $$ 2\pi \tau d\tau \int_{\overline{D}(i,j)} d\mathbf{r}_j \left\{ 1 + \beta^2 p^4 \sum_k \frac{\tau^2}{\left| \mathbf{r}_j - \mathbf{r}_k \right|^2} + \beta^2 p^2 \sum_{k \neq l} p_k p_l \frac{\tau^2 (\mathbf{r}_j - \mathbf{r}_k) \cdot (\mathbf{r}_j - \mathbf{r}_l)}{\left| \mathbf{r}_j - \mathbf{r}_k \right|^2 \left| \mathbf{r}_j - \mathbf{r}_l \right|^2} \right\}$$
  
 +첫 번째 항의 적분은 계의 전체 면적 $A$를 준다(제외되는 반경 $\tau$는 작으므로 무시):
 +$$\int_{\overline{D}(i,j)} d\mathbf{r}_j  \approx A.$$
 +두 번째 항의 적분은 계의 반경을 $R$이라 했을 때에 $R$이 매우 크다면 마치 $\mathbf{r}_k$가 원점에 있는 것처럼 다음처럼 구해진다:
 +$$\int_{\overline{D}(i,j)} \frac{d\mathbf{r}_j}{\left| \mathbf{r}_j - \mathbf{r}_k \right|^2} \approx 2\pi \ln \frac{R}{\tau}.$$
 +세 번째 항의 적분 역시 마찬가지로 $\tau$가 작고 $R$이 큰 극한에서 행한다. 편의상 $\mathbf{r}_k = (\rho,0)$, $\mathbf{r}_l = (-\rho,0)$이라고 한다면 이 적분은
 +\begin{eqnarray}
 +\int_0^R \int_0^{2\pi} \frac{(r^2-\rho^2)}{(r^2+\rho^2+2\rho r\cos\theta) (r^2+\rho^2-2\rho r\cos\theta)}r d\theta dr
 +&=& \pi \ln\left[ \frac{1}{4} \left( 1 + \frac{R^2}{\rho^2} \right) \right]\\
 +&\approx& \pi \ln\left( \frac{R^2}{\left| \mathbf{r}_k - \mathbf{r}_l \right|^2} \right)\\
 +&=& 2\pi \ln\left( \frac{R}{\left| \mathbf{r}_k - \mathbf{r}_l \right|} \right).
 +\end{eqnarray}
 +
 +위 결과들을 모두 더하면
 +\begin{eqnarray}
 +2\pi \tau d\tau \left(A + 2\pi \tau^2 \beta^2 p^4 \sum_k \ln \frac{R}{\tau} + 2\pi \tau^2 \beta^2 p^2 \sum_{k \neq l} p_k p_l \ln \frac{R}{\left| \mathbf{r}_k  - \mathbf{r}_l \right|} \right)
 +&\approx& 2\pi \tau d\tau \left(A - 2\pi \tau^2 \beta^2 p^2 \sum_{k\neq l} p_k p_l \ln \frac{R}{\tau} + 2\pi \tau^2 \beta^2 p^2 \sum_{k \neq l} p_k p_l \ln \frac{R}{\left| \mathbf{r}_k  - \mathbf{r}_l \right|} \right)\\
 +&=& 2\pi \tau d\tau \left( A - 2\pi \tau^2 \beta^2 p^2 \sum_{k \neq l} p_k p_l \ln \left| \frac{\mathbf{r}_k - \mathbf{r}_l}{\tau} \right| \right).
 +\end{eqnarray}
 +
 +따라서
 \begin{eqnarray} \begin{eqnarray}
 Z &=& \sum_{n} \frac{1}{(n!)^2} \kappa^{2n} \int_{D_{2n}} d\mathbf{r}_{2n} \cdots \int_{D_{1}} d\mathbf{r}_{1} e^{-\beta H_{2n}}\\ Z &=& \sum_{n} \frac{1}{(n!)^2} \kappa^{2n} \int_{D_{2n}} d\mathbf{r}_{2n} \cdots \int_{D_{1}} d\mathbf{r}_{1} e^{-\beta H_{2n}}\\
Line 239: Line 259:
 ====피적분함수의 $\tau$를 $\tau+d\tau$로 변경==== ====피적분함수의 $\tau$를 $\tau+d\tau$로 변경====
  
 +\begin{eqnarray}
 +\kappa^{2n} \exp\left[ -\beta\sum_{i\neq j} p_i p_j \ln \tau \right] &\approx& \kappa^{2n} \exp \left\{ -\beta\sum_{i\neq j} p_i p_j \left[ \ln (\tau+d\tau) - \frac{d\tau}{\tau} \right] \right\}\\
 +&=& \kappa^{2n} \exp \left\{ -\beta\sum_{i\neq j} p_i p_j \ln (\tau+d\tau) \right\} \exp \left( \beta \sum_{i \neq j} p_i p_j \frac{d\tau}{\tau} \right)
 +\end{eqnarray}
 +여기에서 $p_i = -p_j$인 인접한 소용돌이 쌍들이 대부분을 기여하므로 $\sum_{i \neq j} p_i p_j \approx -2n p^2$으로 근사하면, 위 식은
 +\begin{eqnarray}
 +\kappa^{2n} \exp \left( - 2n \beta p^2 \frac{d\tau}{\tau} \right) \exp \left\{ -\beta\sum_{i\neq j} p_i p_j \ln (\tau+d\tau) \right\}
 +&\approx& \kappa^{2n} \left( 1 - 2n \beta p^2 \frac{d\tau}{\tau} \right) \exp \left\{ -\beta\sum_{i\neq j} p_i p_j \ln (\tau+d\tau) \right\}\\
 +&\approx& \left[ \kappa \left( 1 - \beta p^2 \frac{d\tau}{\tau} \right) \right]^{2n} \exp \left\{ -\beta\sum_{i\neq j} p_i p_j \ln (\tau+d\tau) \right\}
 +\end{eqnarray}
 +따라서 휘산도의 변화는
 +\begin{eqnarray}
 +\kappa \tau^2 &\longrightarrow& \kappa \left( 1 - \beta p^2 \frac{d\tau}{\tau} \right) (\tau+d\tau)^2\\
 +&\approx& \kappa \left( 1 - \beta p^2 \frac{d\tau}{\tau} \right) (\tau^2 + 2\tau d\tau)\\
 +&=& \kappa \left( 1 - \beta p^2 \frac{d\tau}{\tau} \right) \tau^2 \left(1 + 2 \frac{d\tau}{\tau} \right)\\
 +&\approx& \kappa\tau^2 \left( 1 - \beta p^2 \frac{d\tau}{\tau} + 2\frac{\tau}{d\tau} \right)\\
 +&\approx& \kappa\tau^2 \left[ 1 - (\beta p^2-2) \frac{d\tau}{\tau} \right]
 +\end{eqnarray}
  
 +====결과====
 +
 +차단 길이 $\tau$를 $\tau+d\tau$로 변경함에 따라 계의 맺음변수들이 다음처럼 변화한다:
 +\begin{eqnarray}
 +\beta p^2 &\longrightarrow& (\beta p^2)' = \beta p^2 \left[ 1 - (2\pi)^2 (\beta p^2) (\kappa \tau^2)^2 \frac{d\tau}{\tau} \right]\\
 +\kappa \tau^2 &\longrightarrow& (\kappa \tau^2)' = \kappa \tau^2 \left[ 1 - (\beta p^2 - 2) \frac{d\tau}{\tau} \right].
 +\end{eqnarray}
 +만일 $x \equiv \beta p^2 - 2$와 $y \equiv 2\pi \kappa \tau^2$을 정의한다면 아래처럼 쓸 수 있다:
 +\begin{eqnarray}
 +dx &=& -(x+2)^2 y^2 \frac{d\tau}{\tau}\\
 +dy &=& -xy \frac{d\tau}{\tau}.
 +\end{eqnarray}
 +$\lambda \equiv \ln \tau$로 정의하는 것도 일반적이다:
 +\begin{eqnarray}
 +\frac{dx}{d\lambda} &=& -(x+2)^2 y^2\\
 +\frac{dy}{d\lambda} &=& -xy.
 +\end{eqnarray}
 +$(x,y)=(0,0)$인 고정점 주변에서는 아래처럼 근사할 수 있고
 +\begin{eqnarray}
 +\frac{dx}{d\lambda} &=& -4y^2\\
 +\frac{dy}{d\lambda} &=& -xy,
 +\end{eqnarray}
 +$x = 2\pi K -2$로 쓸 수도 있으므로 $K$와 $y$에 대해 정리하면 아래의 꼴로 나타나기도 한다:
 +\begin{eqnarray}
 +\frac{dK^{-1}}{d\lambda} &=& 2\pi y^2\\
 +\frac{dy}{d\lambda} &=& (2-2\pi K) y.
 +\end{eqnarray}
  
 ======참고문헌====== ======참고문헌======
  • 물리/xy모형.txt
  • Last modified: 2023/09/05 15:46
  • by 127.0.0.1