물리:xy모형

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revisionBoth sides next revision
물리:xy모형 [2023/09/04 17:39] – [피적분함수의 $\tau$를 $\tau+d\tau$로 변경] admin물리:xy모형 [2023/09/04 18:06] – [$i$와 $j$를 제외한 소용돌이들 주변으로의 적분] admin
Line 214: Line 214:
 \end{eqnarray} \end{eqnarray}
 ====$i$와 $j$를 제외한 소용돌이들 주변으로의 적분==== ====$i$와 $j$를 제외한 소용돌이들 주변으로의 적분====
-$$ 2\pi \tau d\tau \int_{\overline{D}(i,j)} d\mathbf{r}_j \left\{ 1 + \beta^2 p^4 \sum_k \frac{\tau^2}{\left| \mathbf{r}_j - \mathbf{r}_k \right|^2} + \beta^2 p^2 \sum_{k \neq l} p_k p_l \frac{\tau^2 (\mathbf{r}_j - \mathbf{r}_k) \cdot (\mathbf{r}_j - \mathbf{r}_l)}{\left| \mathbf{r}_j - \mathbf{r}_k \right|^2 \left| \mathbf{r}_j - \mathbf{r}_l \right|^2} \right\} +$$ 2\pi \tau d\tau \int_{\overline{D}(i,j)} d\mathbf{r}_j \left\{ 1 + \beta^2 p^4 \sum_k \frac{\tau^2}{\left| \mathbf{r}_j - \mathbf{r}_k \right|^2} + \beta^2 p^2 \sum_{k \neq l} p_k p_l \frac{\tau^2 (\mathbf{r}_j - \mathbf{r}_k) \cdot (\mathbf{r}_j - \mathbf{r}_l)}{\left| \mathbf{r}_j - \mathbf{r}_k \right|^2 \left| \mathbf{r}_j - \mathbf{r}_l \right|^2} \right\}$$
-\approx 2\pi \tau d\tau \left( A - 2\pi \tau^2 \beta^2 p^2 \sum_{k \neq l} p_k p_l \ln \left| \frac{\mathbf{r}_k - \mathbf{r}_l}{\tau} \right| \right)$$+
  
 +첫 번째 항의 적분은 계의 전체 면적 $A$를 준다(제외되는 반경 $\tau$는 작으므로 무시):
 +$$\int_{\overline{D}(i,j)} d\mathbf{r}_j  \approx A.$$
 +두 번째 항의 적분은 계의 반경을 $R$이라 했을 때에 $R$이 매우 크다면 마치 $\mathbf{r}_k$가 원점에 있는 것처럼 다음처럼 구해진다:
 +$$\int_{\overline{D}(i,j)} \frac{d\mathbf{r}_j}{\left| \mathbf{r}_j - \mathbf{r}_k \right|^2} \approx 2\pi \ln \frac{R}{\tau}.$$
 +세 번째 항의 적분 역시 마찬가지로 $\tau$가 작고 $R$이 큰 극한에서 행한다. 편의상 $\mathbf{r}_k = (\rho,0)$, $\mathbf{r}_l = (-\rho,0)$이라고 한다면 이 적분은
 +\begin{eqnarray}
 +\int_0^R \int_0^{2\pi} \frac{(r^2-\rho^2)}{(r^2+\rho^2+2\rho r\cos\theta) (r^2+\rho^2-2\rho r\cos\theta)}r d\theta dr
 +&=& \pi \ln\left[ \frac{1}{4} \left( 1 + \frac{R^2}{\rho^2} \right) \right]\\
 +&\approx& \pi \ln\left( \frac{R^2}{\left| \mathbf{r}_k - \mathbf{r}_l \right|^2} \right)\\
 +&=& 2\pi \ln\left( \frac{R}{\left| \mathbf{r}_k - \mathbf{r}_l \right|} \right).
 +\end{eqnarray}
 +
 +위 결과들을 모두 더하면
 +\begin{eqnarray}
 +2\pi \tau d\tau \left(A + 2\pi \tau^2 \beta^2 p^4 \sum_k \ln \frac{R}{\tau} + 2\pi \tau^2 \beta^2 p^2 \sum_{k \neq l} p_k p_l \ln \frac{R}{\left| \mathbf{r}_k  - \mathbf{r}_l \right|} \right)
 +&\approx& 2\pi \tau d\tau \left(A - 2\pi \tau^2 \beta^2 p^2 \sum_{k\neq l} p_k p_l \ln \frac{R}{\tau} + 2\pi \tau^2 \beta^2 p^2 \sum_{k \neq l} p_k p_l \ln \frac{R}{\left| \mathbf{r}_k  - \mathbf{r}_l \right|} \right)\\
 +&=& 2\pi \tau d\tau \left( A - 2\pi \tau^2 \beta^2 p^2 \sum_{k \neq l} p_k p_l \ln \left| \frac{\mathbf{r}_k - \mathbf{r}_l}{\tau} \right| \right).
 +\end{eqnarray}
 +
 +따라서
 \begin{eqnarray} \begin{eqnarray}
 Z &=& \sum_{n} \frac{1}{(n!)^2} \kappa^{2n} \int_{D_{2n}} d\mathbf{r}_{2n} \cdots \int_{D_{1}} d\mathbf{r}_{1} e^{-\beta H_{2n}}\\ Z &=& \sum_{n} \frac{1}{(n!)^2} \kappa^{2n} \int_{D_{2n}} d\mathbf{r}_{2n} \cdots \int_{D_{1}} d\mathbf{r}_{1} e^{-\beta H_{2n}}\\
  • 물리/xy모형.txt
  • Last modified: 2023/09/05 15:46
  • by 127.0.0.1