수학:범함수

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revisionBoth sides next revision
수학:범함수 [2020/01/10 11:57] – [$F$의 미분] admin수학:범함수 [2020/10/13 20:05] – [함께 보기] admin
Line 49: Line 49:
 \] \]
 그 시간 변화율이 언제나 그 시간 변화율이 언제나
-\[ \dot{F} = - \int \xi \rho |\vec{u}|^2 d\vec{r} \le 0 \]+\[ \frac{dF}{dt} = - \int \xi \rho |\vec{u}|^2 d\vec{r} \le 0 \]
 임을 보일 수 있다. 임을 보일 수 있다.
  
Line 116: Line 116:
  
 ====종합==== ====종합====
-앞의 결과들을 모두 모으면 다음과 같다.+앞의 결과들을 모두 모으면 다음과 같다:
 \begin{eqnarray*} \begin{eqnarray*}
 \frac{dF}{dt} &=& \int \left( \Phi + \Psi + \frac{P}{\rho} + \frac{|\vec{u}|^2}{2} \right) \frac{\partial \rho}{\partial t} d\vec{r} + \int \rho \vec{u} \cdot \frac{\partial \vec{u}}{\partial t} d\vec{r}\\ \frac{dF}{dt} &=& \int \left( \Phi + \Psi + \frac{P}{\rho} + \frac{|\vec{u}|^2}{2} \right) \frac{\partial \rho}{\partial t} d\vec{r} + \int \rho \vec{u} \cdot \frac{\partial \vec{u}}{\partial t} d\vec{r}\\
Line 131: Line 131:
 \nabla \frac{P[\rho(\vec{r})]}{\rho(\vec{r})} &=& \frac{\nabla P}{\rho} - \frac{\nabla \rho}{\rho^2} P \nabla \frac{P[\rho(\vec{r})]}{\rho(\vec{r})} &=& \frac{\nabla P}{\rho} - \frac{\nabla \rho}{\rho^2} P
 \end{eqnarray*} \end{eqnarray*}
-임을 이용할 것이다. 또 Green의 벡터 항등식+임을 이용할 것이다. 따라서 
 +\begin{eqnarray*} 
 +\frac{dF}{dt} &=& \int \left[ \nabla \Phi + \frac{P}{\rho^2} \nabla \rho + \frac{\nabla P}{\rho} - \frac{\nabla \rho}{\rho^2} P + \nabla \left( \frac{|\vec{u}|^2}{2} \right) \right] \cdot (\rho \vec{u}) d\vec{r} 
 ++\int \left[ -(\vec{u}\cdot \nabla) \vec{u} - \frac{\nabla P}{\rho} - \nabla \Phi - \xi \vec{u} \right] \cdot (\rho \vec{u}) d\vec{r}\\ 
 +&=& \int (\rho \vec{u}) \cdot \left[ \nabla \left( \frac{|\vec{u}|^2}{2} \right) - \xi \vec{u} - (\vec{u} \cdot \nabla) \vec{u} \right] d\vec{r}. 
 +\end{eqnarray*} 
 +그런데 Green의 벡터 항등식
 \[ \nabla^2 (\vec{A} \cdot \vec{B}) = \vec{A} \cdot \nabla^2 \vec{B} - \vec{B} \cdot \nabla^2 \vec{A} + 2\nabla \cdot [(\vec{B}\cdot \nabla) \vec{A} + \vec{B} \times (\nabla \times \vec{A})]\] \[ \nabla^2 (\vec{A} \cdot \vec{B}) = \vec{A} \cdot \nabla^2 \vec{B} - \vec{B} \cdot \nabla^2 \vec{A} + 2\nabla \cdot [(\vec{B}\cdot \nabla) \vec{A} + \vec{B} \times (\nabla \times \vec{A})]\]
 을 활용하면 을 활용하면
 \[ (\vec{u} \cdot \nabla) \vec{u} = \nabla \left( \frac{|\vec{u}|^2}{2} \right) -\vec{u}\times (\nabla \times \vec{u}) \] \[ (\vec{u} \cdot \nabla) \vec{u} = \nabla \left( \frac{|\vec{u}|^2}{2} \right) -\vec{u}\times (\nabla \times \vec{u}) \]
-임을 보일 수 있다. 따라서 +임을 보일 수 있다. 그러므로 
 +\begin{eqnarray*} 
 +\frac{dF}{dt} &=& 
 +\int (\rho \vec{u}) \cdot \left[ \nabla \left( \frac{|\vec{u}|^2}{2} \right) - \xi \vec{u} - \nabla \left( \frac{|\vec{u}|^2}{2} \right) + \vec{u} \times (\nabla \times \vec{u}) \right] d\vec{r} 
 +\end{eqnarray*} 
 +인데 $\vec{u} \times (\nabla \times \vec{u})$는 $\vec{u}$와 수직하므로 $(\rho \vec{u})$와 내적하면 사라진다. 따라서 다음 결과를 얻는다: 
 +\[ \frac{dF}{dt} = \int (\rho \vec{u}) \cdot (-\xi \vec{u}) d\vec{r} = - \int \rho \xi |\vec{u}|^2 d\vec{r} \le 0. \]
  
 +======함께 보기======
 +  *[[전산물리학:변분법]]
 +  *[[전자기학:정전기학의 톰슨 정리]]
 +  *[[물리:극소 곡면]]
 ======참고 문헌====== ======참고 문헌======
   * T. Lancaster and S. J. Blundell, //Quantum Field Theory for the Gited Amateur// (Oxford Univerty Press, 2014).   * T. Lancaster and S. J. Blundell, //Quantum Field Theory for the Gited Amateur// (Oxford Univerty Press, 2014).
-  * P. H. Chavanis, Eur. Phys. J. B 62, 179 (2008) [[doi:10.1140/epjb/e2008-00142-9|(link)]].+  * P. H. Chavanis, Eur. Phys. J. B 62, 179 (2008) [[http://dx.doi.org/10.1140/epjb/e2008-00142-9|(link)]].
  
  • 수학/범함수.txt
  • Last modified: 2023/09/05 15:46
  • by 127.0.0.1