수학:베이지언_자백약

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
수학:베이지언_자백약 [2017/01/04 14:19] – [개요] admin수학:베이지언_자백약 [2023/09/05 15:46] (current) – external edit 127.0.0.1
Line 23: Line 23:
  
 ====앞면을 본 사람의 사후확률==== ====앞면을 본 사람의 사후확률====
-내가 던진 결과 앞면을 보았고, 다른 말로 나의 진실이 $t_1 \equiv (1,0)$이라고 생각해보자. 그러면 나는 동전에 앞면만 있다는 심증 쪽으로 더 기울 것이다. 즉 +내가 던진 결과 앞면을 보았고, 다른 말로 나의 진실이 $t_1 \equiv (1,0)$이라고 생각해보자. 그러면 나는 동전에 앞면만 있다는 심증 쪽으로 더 기울 것이다. 즉 [[수학:확률|베이즈의 정리]]에 의해 
-$$p[\omega=(1,0)|t_1]=\frac{p[t_1|\omega=(1,0)] \times p[\omega=(1,0)]}{p[t_1|\omega=(1,0)] \times p[\omega=(1,0)] + p[t_1|\omega=(1/2,1/2)] \times p[\omega=(1/2,1/2)]} = \frac{1/2 \times 1/2}{1 \times 1/2 + 1/2 \times 1/2} = \frac{2}{3}$$+\begin{eqnarray*} 
 +p[\omega=(1,0)|t_1]&=&\frac{p[t_1|\omega=(1,0)] \times p[\omega=(1,0)]}{p[t_1|\omega=(1,0)] \times p[\omega=(1,0)] + p[t_1|\omega=(1/2,1/2)] \times p[\omega=(1/2,1/2)]}\\&=\frac{1 \times 1/2}{1 \times 1/2 + 1/2 \times 1/2} = \frac{2}{3} 
 +\end{eqnarray*}
 이고 따라서 $p[\omega=(1/2,1/2)|t_1]=1/3$이라는 것이 나의 사후확률이다. 이고 따라서 $p[\omega=(1/2,1/2)|t_1]=1/3$이라는 것이 나의 사후확률이다.
  
Line 46: Line 48:
 나는 동전에 문제가 없다고 확신하므로, 사람들 전체를 보았을 때에 $1/2$은 앞면을 보았고 나머지 $1/2$은 뒷면을 보았다고 기대한다. 나아가 앞면을 본 전자의 사람들이 (군집 모두가 진실을 얘기했다는 가정 하에) 앞면 응답의 빈도를 $5/6$으로 추측할 것이라고 기대한다. 그리고 뒷면을 본 후자의 사람들이 나와 마찬가지로 앞면 응답의 빈도를 $1/2$로 추측할 것이라고 기대한다. 따라서 나는 나는 동전에 문제가 없다고 확신하므로, 사람들 전체를 보았을 때에 $1/2$은 앞면을 보았고 나머지 $1/2$은 뒷면을 보았다고 기대한다. 나아가 앞면을 본 전자의 사람들이 (군집 모두가 진실을 얘기했다는 가정 하에) 앞면 응답의 빈도를 $5/6$으로 추측할 것이라고 기대한다. 그리고 뒷면을 본 후자의 사람들이 나와 마찬가지로 앞면 응답의 빈도를 $1/2$로 추측할 것이라고 기대한다. 따라서 나는
 $$\log \bar{y}_1 = \frac{1}{2} \log \frac{5}{6} + \frac{1}{2} \log \frac{1}{2}$$ $$\log \bar{y}_1 = \frac{1}{2} \log \frac{5}{6} + \frac{1}{2} \log \frac{1}{2}$$
-이라고 기대한다. 이는 앞면의 응답 비율을 각자 예측한 $y_1^r$을 기하평균하는 것이다.+이라고 기대한다. 이는 앞면의 응답 비율을 사람들이 각자 예측한 결과 $y_1^r$을 기하평균하는 것이다. 단, 이 계산은 전지적 시점에서 이루어지는 것이 아니라 내가 아는 범위 안에서 추론하는 것일 뿐이다.
 같은 방식으로 나는 같은 방식으로 나는
 $$\log \bar{y}_2 = \frac{1}{2} \log \frac{1}{6} + \frac{1}{2} \log \frac{1}{2}$$ $$\log \bar{y}_2 = \frac{1}{2} \log \frac{1}{6} + \frac{1}{2} \log \frac{1}{2}$$
Line 72: Line 74:
  
 그럼 내가 앞면이라고 답할 때의 정보 점수 기대값은 그럼 내가 앞면이라고 답할 때의 정보 점수 기대값은
-$$E\left( \log\frac{\bar{x}_1}{\bar{y}_1} \right) = \frac{2}{3} \left( \log 1 - \log\frac{5}{6} \right) + \frac{1}{3} \left( \log \frac{1}{2} - \frac{1}{2} \log \frac{5}{6}  - \frac{1}{2} \log \frac{1}{2} \right) \right]$$+$$E \left( \log\frac{\bar{x}_1}{\bar{y}_1} \right) = \frac{2}{3} \left( \log 1 - \log\frac{5}{6} \right) + \frac{1}{3} \left( \log \frac{1}{2} - \frac{1}{2} \log \frac{5}{6}  - \frac{1}{2} \log \frac{1}{2} \right)$$
 이고 내가 뒷면이라고 답할 때의 정보 점수 기대값은 이고 내가 뒷면이라고 답할 때의 정보 점수 기대값은
-$$E\left( \log\frac{\bar{x}_2}{\bar{y}_2} \right) = \frac{2}{3} \left( \log 0 - \log\frac{1}{6} \right) + \frac{1}{3} \left( \log \frac{1}{2} - \frac{1}{2} \log \frac{1}{6}  - \frac{1}{2} \log \frac{1}{2} \right) \right]$$+$$E \left( \log\frac{\bar{x}_2}{\bar{y}_2} \right) = \frac{2}{3} \left( \log 0 - \log\frac{1}{6} \right) + \frac{1}{3} \left( \log \frac{1}{2} - \frac{1}{2} \log \frac{1}{6}  - \frac{1}{2} \log \frac{1}{2} \right)$$
 이다. 앞의 경우에 점수가 높다는 것이 명확하므로 나는 앞면이라고 정직하게 답해야 한다. 이다. 앞의 경우에 점수가 높다는 것이 명확하므로 나는 앞면이라고 정직하게 답해야 한다.
  
  • 수학/베이지언_자백약.1483508968.txt.gz
  • Last modified: 2023/09/05 15:46
  • (external edit)