수학:텐서

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
수학:텐서 [2016/10/27 22:36] – [몇 가지 언급] admin수학:텐서 [2023/09/05 15:46] (current) – external edit 127.0.0.1
Line 148: Line 148:
 텐서 분석에서는 어떤 물리적 실재가 있다는 것, 그래서 우리가 관찰을 위해 선택한 특정한 좌표계와 무관하게 동일한 것으로 남아있어야 한다는 생각이 바탕에 깔려 있다. 이를 위해 공변과 반변이 같이 등장해야 한다.[[https://en.wikipedia.org/wiki/Covariance_and_contravariance_of_vectors|위키피디아]]의 탁월한 비유처럼, 만일 우리가 좌표의 축척을 100만큼 나누어서 미터 대신 센티미터로 길이를 재고자 한다면 좌표축에 등장하는 숫자는 100배를 곱해줘야 한다 (즉 1m = 100cm). 전자가 공변이라면 후자는 반변이다. 벡터의 경우에도 공변과 반변이 같이 있음으로써 이러한 불변성이 보장된다: 텐서 분석에서는 어떤 물리적 실재가 있다는 것, 그래서 우리가 관찰을 위해 선택한 특정한 좌표계와 무관하게 동일한 것으로 남아있어야 한다는 생각이 바탕에 깔려 있다. 이를 위해 공변과 반변이 같이 등장해야 한다.[[https://en.wikipedia.org/wiki/Covariance_and_contravariance_of_vectors|위키피디아]]의 탁월한 비유처럼, 만일 우리가 좌표의 축척을 100만큼 나누어서 미터 대신 센티미터로 길이를 재고자 한다면 좌표축에 등장하는 숫자는 100배를 곱해줘야 한다 (즉 1m = 100cm). 전자가 공변이라면 후자는 반변이다. 벡터의 경우에도 공변과 반변이 같이 있음으로써 이러한 불변성이 보장된다:
 $$\vec{v} = v_i \vec{a}^i = v^i \vec{a}_i.$$ $$\vec{v} = v_i \vec{a}^i = v^i \vec{a}_i.$$
 +기울기(gradient) 벡터가 공변이라고 하는 것은 그 __원소__가 공변이라는 뜻이다:
 +$$\left( \nabla u \right)_i = \frac{\partial u}{\partial x^i} = \frac{\partial \tilde{x}^j}{\partial x^i} \frac{\partial u}{\partial \tilde{x}^j}.$$
 +기울기 벡터 자체를 적어보면
 +$$\nabla u = \frac{\partial u}{\partial x^i} \vec{a}^i$$
 +로서, 여기에서 만일 $u = x^j$라면
 +$$\nabla u = \frac{\partial x^j}{\partial x^i} \vec{a}^i = \delta^j_i \vec{a}^i = \vec{a}^j$$
 +가 됨으로써 기울기는 __반변__ 벡터가 될 수 있다. 이는 그 원소가 공변이라는 진술과 모순이 아니라 오히려 잘 들어맞는 결과이다.
 +
 +======계량 텐서======
 +$x^i$ 좌표계에서 아주 짧은 변위 벡터는
 +$d\vec{s} = dx^i \vec{a}_i$
 +이고 따라서 그 제곱은 $ds^2 = dx^i dx^j \vec{a}_i \cdot \vec{a}_j$이다.
 +$g_{ij} \equiv \vec{a}_i \cdot \vec{a}_j$로 정의하면 $ds^2 = g_{ij} dx^i dx^j$이며, 이 때 $g_{ij}$를 계량 텐서라고 부른다.
 +
 +데카르트 좌표계에서 $g_{ij} = \delta_{ij}$이다.
 +
 +이제 기저 벡터 $\vec{\alpha}_i$를 가지는 새로운 $\tilde{x}^i$ 좌표계를 생각해보자. 변위 벡터가 $\vec{s} = \tilde{x}^i \vec{\alpha}_i = \tilde{x}_i \vec{\alpha}^i$로 표현되므로
 +$$\vec{\alpha}_j = \frac{\partial}{\partial \tilde{x}^j} \vec{s} = \frac{\partial x^i}{\partial \tilde{x}^j} \vec{a}_i$$
 +이다. __기존 좌표계__에서의 기저 벡터 $\vec{a}_i$로 표현되었음에 유의한다. 행렬 $J$가 원소로서
 +$$J_{ij} = \frac{\partial x^i}{\partial \tilde{x}^j}$$
 +를 가진다고 하자. 위 $\vec{\alpha}_j$의 표현식과 비교해보면, $J$의 $j$ 번째 열은 $\vec{\alpha}_j$를 __기존 좌표계__에서 표현한 것에 해당한다. 그리고 __새로운 좌표계__에서의 공변 계량 텐서는 행렬 $\tilde{g} = J^T J$로 표현된다.
 +
 +원래의 $x^i$ 좌표계에서의 기술을 이 $\tilde{x}^i$ 좌표계로 옮겨주는 행렬 $R$을 고려하면, 그 행렬의 원소는 다음처럼 주어진다:
 +$$R_{ij} = \frac{\partial \tilde{x}^i}{\partial x^j}.$$
 +한편 우리는 이미 $\nabla x^i = \vec{a}^i$임을 보았다. 이는 $\nabla \tilde{x}^i = \vec{\alpha}^i$임을 유츄하게끔 해주는데, 이 때 $\nabla$는 원래의 $x^i$ 좌표계에서 계산하는 것임에 유의하라. 즉 새로운 좌표계 $\tilde{x}_i$가 가지는 기저 벡터 $\vec{\alpha}^i$들을 __기존 좌표계에서__ 표현하는 것이다. 그러한 방식으로 이 $R$의 $i$ 번째 행은 $\vec{\alpha}^i$를 나타낸다.
 +
 +$R = J^{-1}$이므로 $J^T J R R^T = I$임은 자명하다. 이를 고쳐 적어보면
 +$R J = J^T J R R^T = \tilde{g} R R^T$
 +인데 좌변의 $R J$는 새로운 좌표계에서 적은 $\vec{\alpha}_j$들을 묶어놓은 것이고, 제일 오른쪽에 등장하는 $R R^T$는 마찬가지로 새로운 좌표계에서 적은 $\vec{\alpha}^i$들을 열 벡터들로 묶어둔 것이다. 이 좌표계에서 적은 계량 텐서 $\tilde{g}$가 양쪽을 연결해주는데, 구체적으로는 반변 텐서를 공변으로 바꾸어준다.
 +
 +예를 들어
 +$\left\{ \begin{array}{lcl}
 +x_1&=&\tilde{x}_1+\tilde{x}_2\\
 +x_2&=&\tilde{x}_2
 +\end{array}\right.$,
 +혹은 다른 말로
 +$\left\{ \begin{array}{lcl}
 +\tilde{x}_1&=&x_1-x_2\\
 +\tilde{x}_2&=&x_2
 +\end{array}\right.$,
 +라고 해보자. 위의 $J$ 행렬은 이 경우 다음처럼 구해질 것이다:
 +$$J = \begin{pmatrix}
 +1 & 1\\0 & 1
 +\end{pmatrix}
 += \begin{pmatrix}
 +\vec{\alpha}_1 & \vec{\alpha}_2.
 +\end{pmatrix}$$
 +따라서 계량 텐서는 $\tilde{g} = J^T J = \begin{pmatrix} 1 & 1\\1 & 2 \end{pmatrix} = \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix}$이다. 다른 한편으로 위에서 쓴 $R$ 행렬은 아래와 같을 것이다:
 +$$R = \begin{pmatrix}
 +1 & -1 \\ 0 & 1
 +\end{pmatrix}
 += \begin{pmatrix}
 +\vec{\alpha}^{1^T} \\
 +\vec{\alpha}^{2^T}
 +\end{pmatrix}.$$
 +위의 항등식 $RB = gRR^T$로부터 아래의 관계식을 쉽게 확인할 수 있다:
 +$$R \begin{pmatrix}
 +\vec{\alpha}_1 & \vec{\alpha}_2
 +\end{pmatrix}
 += g R \begin{pmatrix}
 +\vec{\alpha}^1 & \vec{\alpha}^2
 +\end{pmatrix}.$$
 +즉 새로운 좌표계에서 기술한 반변 텐서 $R \vec{\alpha}^i$가 $\tilde{g}$에 의해 (역시 새로운 좌표계에서 기술한) 공변 텐서 $R \vec{\alpha}_i$로 옮겨진다.
  
 ======참고문헌====== ======참고문헌======
  • 수학/텐서.1477577191.txt.gz
  • Last modified: 2023/09/05 15:46
  • (external edit)