수학:텐서

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
수학:텐서 [2016/10/28 00:02] – [계량 텐서] admin수학:텐서 [2023/09/05 15:46] (current) – external edit 127.0.0.1
Line 154: Line 154:
 로서, 여기에서 만일 $u = x^j$라면 로서, 여기에서 만일 $u = x^j$라면
 $$\nabla u = \frac{\partial x^j}{\partial x^i} \vec{a}^i = \delta^j_i \vec{a}^i = \vec{a}^j$$ $$\nabla u = \frac{\partial x^j}{\partial x^i} \vec{a}^i = \delta^j_i \vec{a}^i = \vec{a}^j$$
-가 됨으로써 기울기는 __반변__ 벡터가 될 수 있다. 이는 그 원소가 공변이라는 진술과 모순이 아니라 오히려 일관적인 결과이다.+가 됨으로써 기울기는 __반변__ 벡터가 될 수 있다. 이는 그 원소가 공변이라는 진술과 모순이 아니라 오히려 잘 들어맞는 결과이다.
  
 ======계량 텐서====== ======계량 텐서======
Line 161: Line 161:
 이고 따라서 그 제곱은 $ds^2 = dx^i dx^j \vec{a}_i \cdot \vec{a}_j$이다. 이고 따라서 그 제곱은 $ds^2 = dx^i dx^j \vec{a}_i \cdot \vec{a}_j$이다.
 $g_{ij} \equiv \vec{a}_i \cdot \vec{a}_j$로 정의하면 $ds^2 = g_{ij} dx^i dx^j$이며, 이 때 $g_{ij}$를 계량 텐서라고 부른다. $g_{ij} \equiv \vec{a}_i \cdot \vec{a}_j$로 정의하면 $ds^2 = g_{ij} dx^i dx^j$이며, 이 때 $g_{ij}$를 계량 텐서라고 부른다.
 +
 +데카르트 좌표계에서 $g_{ij} = \delta_{ij}$이다.
  
 이제 기저 벡터 $\vec{\alpha}_i$를 가지는 새로운 $\tilde{x}^i$ 좌표계를 생각해보자. 변위 벡터가 $\vec{s} = \tilde{x}^i \vec{\alpha}_i = \tilde{x}_i \vec{\alpha}^i$로 표현되므로 이제 기저 벡터 $\vec{\alpha}_i$를 가지는 새로운 $\tilde{x}^i$ 좌표계를 생각해보자. 변위 벡터가 $\vec{s} = \tilde{x}^i \vec{\alpha}_i = \tilde{x}_i \vec{\alpha}^i$로 표현되므로
-$$\vec{\alpha}_i = \frac{\partial}{\partial \tilde{x}^i} \vec{s} = \frac{\partial x^j}{\partial \tilde{x}^i} \vec{a}_j$$ +$$\vec{\alpha}_j = \frac{\partial}{\partial \tilde{x}^j} \vec{s} = \frac{\partial x^i}{\partial \tilde{x}^j} \vec{a}_i$$ 
-이다.+다. __기존 좌표계__에서의 기저 벡터 $\vec{a}_i$로 표현되었음에 유의한다. 행렬 $J$가 원소로서 
 +$$J_{ij} = \frac{\partial x^i}{\partial \tilde{x}^j}$$ 
 +를 가진다고 하자. 위 $\vec{\alpha}_j$의 표현식과 비교해보면, $J$의 $j$ 번째 열은 $\vec{\alpha}_j$를 __기존 좌표계__에서 표현한 것에 해당한다. 그리고 __새로운 좌표계__에서의 공변 계량 텐서는 행렬 $\tilde{g} = J^T J$로 표현된다.
  
 원래의 $x^i$ 좌표계에서의 기술을 이 $\tilde{x}^i$ 좌표계로 옮겨주는 행렬 $R$을 고려하면, 그 행렬의 원소는 다음처럼 주어진다: 원래의 $x^i$ 좌표계에서의 기술을 이 $\tilde{x}^i$ 좌표계로 옮겨주는 행렬 $R$을 고려하면, 그 행렬의 원소는 다음처럼 주어진다:
-$$R^i_j = \frac{\partial \tilde{x}^i}{\partial x^j}.$$ +$$R_{ij} = \frac{\partial \tilde{x}^i}{\partial x^j}.$$ 
-한편 우리는 이미 $\nabla x^i = \vec{a}^i$임을 보았다. 이는 $\nabla \tilde{x}^i = \vec{\alpha}^i$임을 유츄하게끔 해주는데, 이 때 $\nabla$는 원래의 $x^i$ 좌표계에서 계산하는 것임에 유의하라. 즉 새로운 좌표계 $\tilde{x}_i$가 가지는 기저 벡터 $\vec{\alpha}^i$들을 __원래의 좌표계에서__ 표현하는 것이다. 요약하면, +한편 우리는 이미 $\nabla x^i = \vec{a}^i$임을 보았다. 이는 $\nabla \tilde{x}^i = \vec{\alpha}^i$임을 유츄하게끔 해주는데, 이 때 $\nabla$는 원래의 $x^i$ 좌표계에서 계산하는 것임에 유의하라. 즉 새로운 좌표계 $\tilde{x}_i$가 가지는 기저 벡터 $\vec{\alpha}^i$들을 __기존 좌표계에서__ 표현하는 것이다. 그러한 방식으로 이 $R$의 $i$ 번째 행은 $\vec{\alpha}^i$를 나타낸다. 
-$$\left(\vec{\alpha}^i\right)_j = \frac{\partial \tilde{x}^i}{\partial x^j}$$ + 
-이라는 것이다.+$R = J^{-1}$이므로 $J^T J R R^T = I$임은 자명다. 이를 고쳐 적어보면 
 +$R J = J^T J R R^T = \tilde{g} R R^T$ 
 +인데 좌변의 $R J$는 새로운 좌표계에서 적은 $\vec{\alpha}_j$들을 묶어놓은 것이고, 제일 오른쪽에 등장하는 $R R^T$는 마찬가지로 새로운 좌표계에서 적은 $\vec{\alpha}^i$들을 열 벡터들로 묶어둔 것이다. 이 좌표계에서 적은 계량 텐서 $\tilde{g}$가 양쪽을 연결해주는데, 구체적으로는 반변 텐서를 공변으로 바꾸어준다. 
 + 
 +예를 들어 
 +$\left\{ \begin{array}{lcl} 
 +x_1&=&\tilde{x}_1+\tilde{x}_2\\ 
 +x_2&=&\tilde{x}_2 
 +\end{array}\right.$, 
 +혹은 다른 말로 
 +$\left\{ \begin{array}{lcl} 
 +\tilde{x}_1&=&x_1-x_2\\ 
 +\tilde{x}_2&=&x_2 
 +\end{array}\right.$, 
 +라고 해보자. 위의 $J$ 행렬은 이 경우 다음처럼 구해질 것이다: 
 +$$J = \begin{pmatrix} 
 +1 & 1\\0 & 1 
 +\end{pmatrix} 
 += \begin{pmatrix} 
 +\vec{\alpha}_1 & \vec{\alpha}_2. 
 +\end{pmatrix}$$ 
 +서 계량 텐서는 $\tilde{g} = J^T J = \begin{pmatrix} 1 & 1\\1 & 2 \end{pmatrix} = \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix}$이다. 다른 한편으로 위에서 쓴 $R$ 행렬은 아래와 같을 것이다: 
 +$$R = \begin{pmatrix} 
 +1 & -1 \\ 0 & 1 
 +\end{pmatrix} 
 += \begin{pmatrix} 
 +\vec{\alpha}^{1^T} \\ 
 +\vec{\alpha}^{2^T} 
 +\end{pmatrix}.$$ 
 +위의 항등식 $RB = gRR^T$로부터 아래의 관계식을 쉽게 확인할 수 있다: 
 +$$R \begin{pmatrix} 
 +\vec{\alpha}_1 & \vec{\alpha}_2 
 +\end{pmatrix} 
 += g R \begin{pmatrix} 
 +\vec{\alpha}^1 & \vec{\alpha}^2 
 +\end{pmatrix}.$$ 
 +즉 새로운 좌표계에서 기술한 반변 텐서 $R \vec{\alpha}^i$가 $\tilde{g}$에 의해 (역시 새로운 좌표계에서 기술한) 공변 텐서 $R \vec{\alpha}_i$로 옮겨진다.
  
 ======참고문헌====== ======참고문헌======
  • 수학/텐서.1477582342.txt.gz
  • Last modified: 2023/09/05 15:46
  • (external edit)