전자기학:다중극_전개

This is an old revision of the document!


개요

다중극 전개는 여러개의 전하가 특정 지점까지의 만들어내는 전위를 전개식으로 나타내는 것이다. 홀극, 쌍극자, 사중극자, 팔중극자… 등이 특정 지점에 만드는 전위를 생각해볼 수 있다.

2차원 (또는 $\phi$-Symmetry) 다중극 전개

전하가 분포하고 있는 원천에서 $\mathbf{r'}$지점에 미소부피 $d\tau'$가 있다고 하면 전위를 다음과 같이 쓸 수 있다.

\begin{align} V(\vec{r}) = \frac{1}{4\pi\epsilon_0}\int\frac{\rho(\vec{r}')}{|\vec{r}-\vec{r}'|}d\tau' \end{align}

이 때 $|\vec{r}-\vec{r}'|$는 코사인 법칙을 이용하고, $r'<<r$을 가정하여,

\begin{align} |\vec{r}-\vec{r}'|^2 &= r^2 + r'^2 - 2rr'\cos\alpha \\ &= r^2(1+(\frac{r'}{r})^2-2(\frac{r'}{r})\cos\alpha) \\ |\vec{r}-\vec{r}'|^{-1} &= \frac{1}{r}(1+(\frac{r'}{r})^2-2(\frac{r'}{r})\cos\alpha)^{-1/2} \end{align}

따라서 전위는

\begin{align} V(\vec{r}) = \frac{1}{4\pi\epsilon_0}\int\frac{\rho(\vec{r}')}{r}\left[1+(\frac{r'}{r})^2-2(\frac{r'}{r})\cos\alpha\right]^{-1/2}d\tau' \end{align}

으로 바뀌게 된다. 이 때 대괄호항은 르장드르 함수의 생성함수

\begin{align} (1-2hx+h^2)^{-1/2} = \sum_{l=0}^{\infty}h^lP_l(x) \quad (|h|<1) \end{align}

이므로 전위식에 대응하면 다중극 전개의 일반적인 형태가 만들어진다.

\begin{align} V(\vec{r}) &= \frac{1}{4\pi\epsilon_0}\int\frac{\rho(\vec{r'})}{r}\sum_{l=0}^{\infty}(\frac{r'}{r})^lP_l(\cos\alpha)d\tau' \\ &= \frac{1}{4\pi\epsilon_0}\sum_{l=0}^{\infty}\frac{1}{r^{l+1}}\int({r'})^lP_l(\cos\alpha){\rho(\vec{r'})}d\tau' \end{align}

여기서 르장드르 다항식의 값에 따라, $l=0$에서 홀극, $l=1$에서 쌍극의 전위식이 나타난다.

\begin{align} V_{mono}(\vec{r}) = \frac{1}{4\pi\epsilon_0}\frac{Q}{r} \qquad V_{dip}(\vec{r}) = \frac{1}{4\pi\epsilon_0}\frac{1}{r^2}\int{r'}\cos\alpha\rho(\vec{r'})d\tau' \end{align}

3차원 다중극 전개

구면 좌표계의 모든 성분을 고려한 다중극 전개는 조금 복잡하다. 구면 좌표계에서 아래의 그림과 같이 $\vec{r'}=(r',\theta',\phi')$, $\vec{r}=(r,\theta,\phi)$가 있다고 하자.

앞의 $|\vec{r}-\vec{r}'|$으로 사이의 각도를 고려하듯이, 여기서도 $\vec{r'}$과 $\vec{r}$ 사이의 각도를 구해보도록 하자. 먼저, $\vec{r'}$과 $\vec{r}$의 사잇각 $\alpha$의 코사인 값은

\begin{align} \cos\alpha = \hat{r}\cdot\hat{r}' \end{align}

이고, $\hat{r}$과 $\hat{r}'$은 구면 좌표계에서 직교 좌표계로의 표현으로,

\begin{align} \hat{r} = \left(\sin\theta\cos\phi,\sin\theta\sin\phi,\cos\theta\right) \\ \hat{r}' = \left(\sin\theta'\cos\phi',\sin\theta'\sin\theta',\cos\theta'\right) \end{align}

이므로 두 단위벡터의 내적은,

\begin{align} \hat{r}\cdot\hat{r}' &= \cos\alpha \\ &= \sin\theta\sin\theta'(\cos\phi\cos\phi' + \sin\phi\sin\phi') + \cos\theta\cos\theta' \\ &= \sin\theta\sin\theta'\cos(\phi-\phi') + \cos\theta\cos\theta' \end{align}

구면 조화 함수는 $\theta, \phi$방향을 고려한 함수이다.

\begin{align} Y_l^m(\theta,\phi) = (-1)^m\sqrt{\frac{2l+1}{4\pi}\frac{(l-m)!}{(l+m)!}}P_l^m(\cos\theta)e^{im\phi} \end{align}

여기서 l과 m의 범위는

\begin{align} l=0,1,2,\cdots \qquad -l{\leq}m{\leq}l \end{align}

푸리에 급수의 성질과 같이, 구면 조화 함수도 직교성이 있다. 직교성을 이용하면 르장드르 다항식 앞에 붙는 계수들을 결정할 수 있다.

\begin{align} \iint{Y_l^m(\theta,\phi)}{Y_{l'}^{m'}(\theta,\phi)}\sin\theta{d\theta}{d\phi} = \delta_{ll'}\delta_{mm'} \end{align}

여기서 나중의 계산을 위하여 입체각(Solid Angle)로 바꾸기로 한다. 즉,

\begin{align} d\Omega = \sin\theta{d\theta}{d\phi} \end{align}

  • 전자기학/다중극_전개.1605086237.txt.gz
  • Last modified: 2023/09/05 15:46
  • (external edit)