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Torus Instability in an Extended Medium

Seung Ki Baek∗ and Hie-Tae Moon

Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701

We investigate the dynamics of quasiperiodic solution in a real flow. Here, a two-mode truncation
of the Ginzburg-Landau equation is considered entailing a four-dimensional phase space. We ana-
lyze, in particular, the evolution and the instability of single-lobed tori observed in the phase space.
One-dimensional return maps are used to investigate the basic characteristics of the dynamics.
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I. INTRODUCTION

We consider a continuous physical system where
a monochromatic wave is modulationally destabilized.
The slow temporal and spatial modulation of the en-
velopes of a destabilized wave train, in a weakly nonlin-
ear medium, is universally described by the Ginzburg-
Landau equation (GL):

Ψt = εΨ + (ε + i)Ψxx − (ε− i)|Ψ|2Ψ, (1)

where the real positive parameter ε measures the
strength of dissipation of the system. GL first arose
in the context of superconductor theory, but now it is
known that fluid-dynamics problems such as Rayleigh-
Bénard convection and Taylor vortex flow, pattern form-
ing and many reaction-diffusion systems are governed by
this equation [1–5]. GL has been extensively studied,
due to its pervasiveness in various fields.

Ref. [6] accounts for the numerically observed expo-
nential decay of the Fourier modes. In other words,
the distance between the solution of GL and that of its
Nth order Fourier-mode approximation becomes expo-
nentially small as N increases. This result explains that
the GL equation can be approximated by low dimen-
sional Galerkin projections. Three-dimensional trunca-
tion, however, fails to mimic many of the details of the
full GL equation because the truncation lacks many of
the same homoclinic orbits [7,8]. Hence, the dimension
of the approximated equation should be at least four.

Following Ref. [8], we analyze bifurcations in the sub-
dynamical system obtained by restricting the GL to the
space of even functions E ; solutions for this restricted
system can always be expressed as a cosine series under
periodic boundary conditions [9]:

Ψ(x, t) = a1(t) + a2(t) cos qx + a3(t) cos 2qx + · · · ,(2)

where ai(t) are complex. Note that Eq. (1) has an
odd power nonlinearity which guarantees that an even
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(or odd) initial condition should result in an even (or
odd) solution. Two complex modes are chosen near the
threshold of modulational instability, entailing a four-
dimensional phase space [10]:

ȧ1 = εa1 + (i− ε)
{
|a1|2a1 + a1|a2|2 +

1
2
a1

∗a2
2

}
,

ȧ2 = εa2 − q2(i + ε)a2

+ (i− ε)
{

a1
2a2

∗ + 2|a1|2a2 +
3
4
|a2|2a2

}
. (3)

Eq. (3) contains two parameters ε and q, which mea-
sure the strength of dissipation and spatial frequency,
respectively. When ε = 0, the system becomes conserva-
tive, and the O(2) symmetry of Eq. (1) still remains as
an inversion symmetry a2(t) → −a2(t), which plays an
active role such as symmetry breaking and restoration in
dynamic evolution.

As is well-known, Eq. (3) possesses a limit cycle solu-
tion, usually called Stokes mode, with frequency ω = 1:

a1(t) = eit, (4)

regardless of ε and q. How this mode loses or gains sta-
bility is a matter of particular importance. A linear sta-
bility analysis shows that it becomes unstable under the
following perturbation if ε is small:

a1(t = 0) = 1, (5)
a2(t = 0) = δ � 1,

if q ≤ qth ≈
√

2(1 − ε2). Now let us see how Eq. (5)
becomes structurally destabilized at various ε’s. This
system displays plenty of dynamics as we explore the
parameter space.

The main purpose of this paper is to present the bi-
furcation phenomena by using nonlinear dynamical tools
and to clarify the relationship with the classical exam-
ples, such as the Lorenz system and the logistic map.
Then, as those systems serve as touchstones of many
theories in lower than four dimensions, Eq. (3) may
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be another case in four dimensions. The results below
show that the dissipation ε strongly affects the stability
of single-lobed tori, which is critical in the whole bifurca-
tion history [11,12], and that the characteristic behaviors
can be simulated by simple and familiar one-dimensional
return maps, in spite of the high dimensionality.

II. BEHAVIORS OF A FOUR-DIMENSIONAL
SYSTEM

One can write a1 in polar form:

a1(t) = eiθ(t)|a1(t)|, (6)

and Eq. (1) has the S1 phase symmetry:

(α ·Ψ)(x, t) = Ψ(x, t)eiα, (7)

where α is real. This phase symmetry allows a simple
choice of coordinates on E , decoupled from θ(t). We
correlate movement of this system with the solution am-
plitude because taking amplitude removes phase infor-
mation. Ref. [13] investigated dynamical features of GL
in use of Ki, the ith maximum of |a2|.

Another approach rewrites the trajectory as follows:

a1 = 1− Z(t) + iW (t), (8)
a2 = X(t) + iY (t),

to obtain a 4-dimensional phase space spanned by X,
Y , Z, and W . Since we cannot visualize trajectories
in 4-dimensional space, we study the corresponding dis-
crete trajectories in a 3-dimensional Poincaré space de-
fined properly: whenever a trajectory passes through the
plane W = 0 with a direction dW/dt > 0, we mark the
other three coordinates (X, Y, Z) of the piercing point.
The nth point (Xn, Yn, Zn) is then uniquely mapped into
the next point (Xn+1, Yn+1, Zn+1), which now defines a
discrete trajectory in a 3-dimensional space, which we
refer to here as the Poincaré space.

1. Large dissipation (ε = 0.40)

Figure 1(a) and (b) depict the bifurcation diagram of
Ki and the Poincaré sections of Eq. (3), respectively.
In this case, the whole bifurcation history appears as a
simple continuous line, since the large dissipation sup-
presses all sudden transitions. The origin, representing
the Stokes mode, loses its stability at q ' 1.204 via su-
percritical pitchfork bifurcation, and another periodicity
(I) becomes a new solution breaking the inversion sym-
metry. After this periodicity undergoes Hopf bifurcation
yielding a single-lobed torus (II), it in turn bifurcates
into a double-lobed torus (II’) on touching the origin
with q ' 0.950 (Figure 1(b)).

Fig. 1. A large-dissipation case of ε = 0.40 with (a) the
bifurcation diagram in terms of |Ki|, and (b) a Poincaré sec-
tion. I: an asymmetric periodic orbit marked by a cross; II:
a single-lobed torus; III: a double-lobed torus.

One of the authors explained the creation of the torus
as being guided by repelling invariant manifolds of three
fixed points in the Poincaré space [10]: the origin is a sad-
dle and its unstable manifolds guide the trajectory into
a torus. Ref. [14] explains that the symmetry should be
restored immediately at the moment when an asymmet-
ric orbit, a single-lobed torus, comes into contact with a
symmetric point, the origin.

2. Small dissipation (ε = 0.06)

If the dissipation is small, the bifurcation diagram
exhibits a discontinuous transition (Figure 2(a)). The
asymmetric periodicity (I) jumps up to a double-lobed
torus (II) at q ' 1.121 via subcritical Hopf bifurcation.

If we move the control parameter q in the other di-
rection, the cycle enters the route to chaos via period-
doubling cascade (Figure 2(b)). The bifurcation se-
quence, which is common in many dynamical systems,
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Fig. 2. A small-dissipation case of ε = 0.06 with (a) the
bifurcation diagram, and (b) the enlarged period-doubling
cascade. The single-lobed torus disappears in this figure by
losing its stability.

starts with breaking the inversion symmetry, doubles its
period, and restores symmetry when it finally becomes
chaotic. This pattern repeats itself three times, where
the starting periods are 1, 2, and 4, respectively. Plotting
(Ki,Ki+1), we observe a noninvertible one-dimensional
return map at the chaotic region, similar to that of
the Lorenz system. These chaotic behaviors end with
q ' 1.218, and the system returns back to periodicity
(I). Since this kind of phenomenon is highly nontrivial,
we denote it as complex hysteresis [15]. The single-lobed
torus is now unstable and thus plays a role of border-
line between the basins of attraction for periodicity and
chaos.

3. Intermediate dissipation (ε = 0.21)

Figure 3 describes an intermediate stage between large
and small dissipation. Now we see the emergence of a sta-

Fig. 3. An intermediate-dissipation case of ε = 0.21 with
(a) the bifurcation diagram, and (b) the enlarged chaotic re-
gion. Note that the Hopf bifurcation becomes supercritical,
as the line II indicates.

ble line (II) as in the highly dissipative case. This new
connecting branch indicates that the subcritical Hopf bi-
furcation changes into a supercritical one.

The intermediate value of ε = 0.21 pushes the chaotic
region (II´) to the left and compresses the period-
doubling cascade into a single point. Hence if we suc-
cessively increase q, the torus undergoes period doubling
at a single point q ' 0.942. Such a direct transition
from quasiperiodicity to chaos coincides with the result
of Ref. [10]. In the other direction with decreasing q, the
chaotic orbit persists until q ' 0.940 and then a torus is
suddenly recovered with discontinuity [16].

III. DISCUSSION

Despite its simplified aspects, a one-dimensional
map is a useful tool for explaining dynamics of high-
dimensional systems, especially when they are highly dis-
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Fig. 4. A simple bistable map. As the control parameter
modulates, the map alternates among 1, 2, and 3, exhibiting
hysteresis.

Fig. 5. Schematic diagrams for one-dimensional simplifi-
cation of Eq. (3). (a) The composite map of a simple in-
tersection and a Lorenz-like cusp for a small-dissipation case,
and (b) its corresponding Poincaré section. I: periodicity; II:
chaos. (c) A flattened map consisting of three parts, and
(d) its corresponding Poincaré section. I: periodicity; II: a
single-lobed torus; II´: a double-lobed torus.

sipative [17–20].
We first consider a bistable one-dimensional map (Fig-

ure 4). As the control parameter changes, it exhibits hys-
teresis between two stable fixed points. The hysteresis of
Eq. (3) is, however, a little different. Let Ki+1 = F (Ki)
denote the one-dimensional return map of this system.
On comparing it with the above simple hysteretic map,
the main difference is that the upper intersection is re-
placed by a Lorenz map (Figure 5). Therefore, this sys-
tem can possess two states, a fixed point and a Lorenz-
like chaotic motion. In Ref. [15], we suggested a complex
hysteresis map as follows (Figure 6):

F (x) = qh(x;κ1, σ1) + (1− q)h(x;κ2, σ2) (9)

with (κ1, σ1) = (0.4, 0.07) and (κ2, σ2) = (0.6, 0.3),
where

h(x) = κx1/3 + 0.67x2 exp

{
−

(
x− 0.72

σ

)2
}

. (10)

According to Ref. [20], each part of the Lorenz map is

Fig. 6. (a) The map F in Eq. (9), and (b) its bifurcation
diagram simulating the result of Figure 2.

interpreted geometrically on the original Lorenz system.
That is, the cusp corresponds to a homoclinic trajectory
in the real flow which terminates in the origin and the
contact point with the 45-degrees line represents Hopf
periodic points, where single-lobed tori arise. Similar
statements also apply to our system, due to the gener-
icity of the Lorenz model [21,22]. The Hopf bifurcation
point is unstable (|F ′| > 1), and the orbit is immediately
thrown into the chaotic Lorenz map as soon as it arrives
at the Hopf bifurcation.

The map approach gives another insight on this sys-
tem. It is well known that a one-dimensional map can be
partitioned by choosing critical points. Henceforth, each
side of the cusp is given a different symbol. The right par-
tition is orientation-reversing (OR) and an OR branch
causes period-doubling [23], since a symbol sequence is
transformed as 11 → 11̄ → 10 by applying OR, where the
upper bar means conjugation. Therefore, a period dou-
bles in this manner: (10)∞ → (1010)∞ → (10̄1̄¯̄0)∞ →
(1100)∞. On considering that the OR branch lies outside
of the cusp (a homoclinic orbit), this mapping viewpoint
explains why period doubling occurs only in the double-
lobed torus.

As ε increases, the return map becomes lower and flat-
ter, which causes the period-doubling cascade to shrink
into a point, as observed in Figure 3. This phenomenon
is typical of piecewise linear chaotic systems [24,25]. One
can deduce that the map looks like a tent map at ε = 0.26
and mainly consists of three parts (Figure 5(c)), all of
which have a slope of magnitude less than 1. Then, the
left part (I) corresponds to periodicity, the middle part
(II) means a single-lobed torus after Hopf bifurcation,
and the right part (III) is involved in the appearance
of a double-lobed torus. As this map intersects the 45-
degrees line stably all the time, there are no jumps, nor
chaos.

IV. SUMMARY

We observed various behaviors in the approximated
GL resulting from two complex modes truncation. When
the dissipation is sufficiently small, single-lobed tori lose
stability and the whole bifurcation history also changes
quantitatively. A distinctive observation is complex hys-
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teresis, i.e. subcriticality involving many dynamical
states as well as chaos. A one-dimensional map is ex-
ploited to describe these phenomena, and this provides
a consistent understanding of other previous work.
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