This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision |
김민재:스터디:임계현상:3장._가우스_근사 [2017/10/05 16:38] – [주어진 온도가 임계온도보다 큰 경우] minjae | 김민재:스터디:임계현상:3장._가우스_근사 [2023/09/05 15:46] (current) – external edit 127.0.0.1 |
---|
\begin{equation}\notag | \begin{equation}\notag |
\begin{split} | \begin{split} |
C&=n\left[\frac{{a_2}^\prime^2}{2}T^2(2\pi)^{-d}\int d^dk(a_2+ck^2)^{-2}\right]+l.s \\ | C&=n\left[\frac{{a_2}^{\prime~2}}{2}T^2(2\pi)^{-d}\int d^dk(a_2+ck^2)^{-2}\right]+l.s \\ |
&=n\left[\frac{a_{2}^{\prime}^{2}}{2}T^{2}(2\pi)^{-d}\int d^{d}\left(\frac{k^{\prime}}{\xi}\right)(c\xi^{-2}+ck^{\prime}^{2}\xi^{-2})^{2}\right]+l.s \\ | &=n\left[\frac{{a_2}^{\prime~2}}{2}T^{2}(2\pi)^{-d}\int d^{d}\left(\frac{k^\prime}{\xi}\right)(c\xi^{-2}+ck^{\prime}^{2}\xi^{-2})^{2}\right]+l.s \\ |
&=n\left[\frac{1}{2}(Ta_{2}^{\prime})^{2}(2\pi)^{-d}c^{-2}\int d^{d}k^{\prime}(1+k^{\prime}^{2})^{-2}\right]\xi^{4-d}+l.s \\ | &=n\left[\frac{1}{2}(T{a_2}^\prime)^2(2\pi)^{-d}c^{-2}\int d^dk^\prime(1+k^{\prime~2})^{-2}\right]\xi^{4-d}+l.s \\ |
&\equiv C_{0}\xi^{4-d}+l.s | &\equiv C_0\xi^{4-d}+l.s |
\end{split} | \end{split} |
\end{equation} | \end{equation} |