물리:결맞는_상태_coherent_state

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
물리:결맞는_상태_coherent_state [2024/12/24 18:44] minwoo물리:결맞는_상태_coherent_state [2024/12/25 08:50] (current) minwoo
Line 247: Line 247:
 \\ \\
  
-& \sigma_x \sigma_p =\hbar^2 \left(n+\frac{1}{2}\right)^2 \ge \left( \frac{\hbar}{2} \right)^2 \quad \left(\because \ \sigma_A = \langle A^2 \rangle - \langle A \rangle ^2 \right)+& \sigma_x^2 \sigma_p^2 =\hbar^2 \left(n+\frac{1}{2}\right)^2 \ge \left( \frac{\hbar}{2} \right)^2 \quad \left(\because \ \sigma_A^2 = \langle A^2 \rangle - \langle A \rangle ^2 \right)
  
 \end{align} \end{align}
Line 266: Line 266:
 {{:물리:number_eigenstate1.png?300|}} {{:물리:number_eigenstate1.png?300|}}
  
-위의 폭은 σxσp=2(n+12)2(2)2의 불확정성에 의한 것이다.+위의 폭은 $ \sigma_x^2 \sigma_p^2 =\hbar^2 \left(n+\frac{1}{2}\right)^2 \ge \left( \frac{\hbar}{2} \right)^2 $의 불확정성에 의한 것이다.
  
 ==== '결맞는 상태' (coherent state) ==== ==== '결맞는 상태' (coherent state) ====
Line 277: Line 277:
 \hat{p}=-i\sqrt{\frac{\hbar m\omega}{2}}(a-a^{\dagger}) ,\\ \hat{p}=-i\sqrt{\frac{\hbar m\omega}{2}}(a-a^{\dagger}) ,\\
  
-\langle\alpha| x |\alpha\rangle=\sqrt{\frac{\hbar}{2m \omega}}\left(\ (\langle\alpha| (a^{\dagger}+a)|\alpha\rangle)\ \right) \\+\langle\alpha| x |\alpha\rangle=\sqrt{\frac{\hbar}{2m \omega}}\left(\ \langle\alpha| (a+a^{\dagger})|\alpha\rangle\ \right) \\
 = \sqrt{\frac{\hbar}{2m \omega}}(\alpha^* +\alpha) \\ = \sqrt{\frac{\hbar}{2m \omega}}(\alpha^* +\alpha) \\
 \\ \\
 \langle\alpha| \hat{p} |\alpha\rangle=-i\sqrt{\frac{\hbar m\omega}{2}} \langle\alpha| \hat{p} |\alpha\rangle=-i\sqrt{\frac{\hbar m\omega}{2}}
-\left(\ (-\langle\alpha| (a^{\dagger}+a)|\alpha\rangle)\ \right) \\+\left(\ \langle\alpha| (a-a^{\dagger})|\alpha\rangle\ \right) \\
 =-i\sqrt{\frac{\hbar m\omega}{2}}(-\alpha^*+\alpha)$$ =-i\sqrt{\frac{\hbar m\omega}{2}}(-\alpha^*+\alpha)$$
  
Line 305: Line 305:
 \\ \\
  
-& \sigma_x \sigma_p =(\frac{\hbar}{2m\omega})(\frac{\hbar m\omega}{2})=\left(\frac{\hbar}{2}\right)^2+& \sigma_x^2 \sigma_p^2 =(\frac{\hbar}{2m\omega})(\frac{\hbar m\omega}{2})=\left(\frac{\hbar}{2}\right)^2
 \end{align} \end{align}
  
  • 물리/결맞는_상태_coherent_state.1735033470.txt.gz
  • Last modified: 2024/12/24 18:44
  • by minwoo