Differences
This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
물리:결맞는_상태_coherent_state [2024/12/24 18:44] – minwoo | 물리:결맞는_상태_coherent_state [2024/12/25 08:50] (current) – minwoo | ||
---|---|---|---|
Line 247: | Line 247: | ||
\\ | \\ | ||
- | & \sigma_x \sigma_p =\hbar^2 \left(n+\frac{1}{2}\right)^2 \ge \left( \frac{\hbar}{2} \right)^2 \quad \left(\because \ \sigma_A = \langle A^2 \rangle - \langle A \rangle ^2 \right) | + | & \sigma_x^2 \sigma_p^2 =\hbar^2 \left(n+\frac{1}{2}\right)^2 \ge \left( \frac{\hbar}{2} \right)^2 \quad \left(\because \ \sigma_A^2 = \langle A^2 \rangle - \langle A \rangle ^2 \right) |
\end{align} | \end{align} | ||
Line 266: | Line 266: | ||
{{: | {{: | ||
- | 위의 폭은 σxσp=ℏ2(n+12)2≥(ℏ2)2의 불확정성에 의한 것이다. | + | 위의 폭은 $ \sigma_x^2 \sigma_p^2 =\hbar^2 \left(n+\frac{1}{2}\right)^2 \ge \left( \frac{\hbar}{2} \right)^2 $의 불확정성에 의한 것이다. |
==== ' | ==== ' | ||
Line 277: | Line 277: | ||
\hat{p}=-i\sqrt{\frac{\hbar m\omega}{2}}(a-a^{\dagger}) ,\\ | \hat{p}=-i\sqrt{\frac{\hbar m\omega}{2}}(a-a^{\dagger}) ,\\ | ||
- | \langle\alpha| x |\alpha\rangle=\sqrt{\frac{\hbar}{2m \omega}}\left(\ | + | \langle\alpha| x |\alpha\rangle=\sqrt{\frac{\hbar}{2m \omega}}\left(\ \langle\alpha| (a+a^{\dagger})|\alpha\rangle\ \right) \\ |
= \sqrt{\frac{\hbar}{2m \omega}}(\alpha^* +\alpha) \\ | = \sqrt{\frac{\hbar}{2m \omega}}(\alpha^* +\alpha) \\ | ||
\\ | \\ | ||
\langle\alpha| \hat{p} |\alpha\rangle=-i\sqrt{\frac{\hbar m\omega}{2}} | \langle\alpha| \hat{p} |\alpha\rangle=-i\sqrt{\frac{\hbar m\omega}{2}} | ||
- | \left(\ | + | \left(\ \langle\alpha| (a-a^{\dagger})|\alpha\rangle\ \right) \\ |
=-i\sqrt{\frac{\hbar m\omega}{2}}(-\alpha^*+\alpha)$$ | =-i\sqrt{\frac{\hbar m\omega}{2}}(-\alpha^*+\alpha)$$ | ||
Line 305: | Line 305: | ||
\\ | \\ | ||
- | & \sigma_x \sigma_p =(\frac{\hbar}{2m\omega})(\frac{\hbar m\omega}{2})=\left(\frac{\hbar}{2}\right)^2 | + | & \sigma_x^2 \sigma_p^2 =(\frac{\hbar}{2m\omega})(\frac{\hbar m\omega}{2})=\left(\frac{\hbar}{2}\right)^2 |
\end{align} | \end{align} | ||