배규호:눈금_바꿈_가설

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
배규호:눈금_바꿈_가설 [2017/05/16 10:56] bekuho배규호:눈금_바꿈_가설 [2023/09/05 15:46] (current) – external edit 127.0.0.1
Line 1: Line 1:
 ======눈금 바꿈 가설(Scaling Hypothesis)====== ======눈금 바꿈 가설(Scaling Hypothesis)======
  
-눈금 바꿈 가설은 강자성체의 상전이 온도 근방에서 일어나는 모든 특이 현상들이 자성체를 이루는 스핀들의 긴 범위에 걸쳐있는 상관 관계 문에 나타난다는 가설이다. +눈금 바꿈 가설은 강자성체의 상전이 온도 근방에서 일어나는 모든 특이 현상들이 자성체를 이루는 스핀들의 긴 범위에 걸쳐있는 상관 관계 문에 나타난다는 가설이다. 
  
-이 때 스핀들이 상관관계를 가지는 범위를 상관 길이라고 부른다. 중요한 점은 [[배규호:상관 길이]]가 특정한 함수의 [[김민재:가우시안 어림법]]을 푸는 과정에서 나오는 것만은 아니라는 사실이다.+이 때 스핀들이 상관관계를 가지는 범위를 상관 길이라고 부른다. 중요한 점은 [[배규호:상관 길이]]가 특정한 함수의 가우스 어림법을 푸는 과정에서 나오는 것만은 아니라는 사실이다.
  
-또한 상관 길이는 상전이 온도 근방에서 발산하기 때문에 상전이 현상에서 상관 함수가 상관 길이의 함수로 쓰여질 수 있어야 한다.+또한 상관 길이는 상전이 온도 근방에서 발산하기 때문에 상전이 현상에서 상관 길이가 온도에만 존하는 어떤 함수라고 가정한다.
  
 $G(k)$ 를 변수 $k\xi$, $b_1/\xi,b_2/\xi,...$ 의 함수로 쓸 수 있다고 하자. 이 때 $b_1,b_2,...$은 $|T-T_c|$ 가 충분히 작을 때 $\xi$ 를 넘지 않는 임의의 길이로 둔다. $G(k)$ 를 변수 $k\xi$, $b_1/\xi,b_2/\xi,...$ 의 함수로 쓸 수 있다고 하자. 이 때 $b_1,b_2,...$은 $|T-T_c|$ 가 충분히 작을 때 $\xi$ 를 넘지 않는 임의의 길이로 둔다.
  
 $\xi$ 가 발산할 때 $G(k)$를 위 변수의 함수로 나타낸다면  $\xi$ 가 발산할 때 $G(k)$를 위 변수의 함수로 나타낸다면 
-\begin{equation}\notag + 
-\begin{split} + 
-G(k) &= f(k\xi,b_1/\xi,b_2/\xi,... \\ +$$G(k) = f(k\xi,b_1\xi,b_2\xi, \dots$$ 
-&= f(k\xi) + \sum_{i=1}\frac{\partial{f(k\xi,b_1/\xi,b_2/\xi,...)}}{\partial{(b_i/\xi)}}(b_i/\xi) + \sum_{i=1}\frac{\partial^{2}{f(k\xi,b_1/\xi,b_2/\xi,...)}}{\partial{(b_i/\xi)^2}}(b_i/\xi)^2 + higher\left orders \left of \left (b_i/\xi) \\ +$$= f(k\xi) + \sum_{i=1}\frac{\partial{f(k\xi,b_1\xi,b_2\xi,\dots)}}{\partial{(b_i\xi)}} (b_i \xi) + \sum_{i=1}\frac{\partial^{2}{f(k\xi,b_1 \xi,b_2\xi,\dots)}}{\partial{(b_i\xi)^2}}(b_i\xi)^2 + \text{higher orders of }\left(b_i\xi \right$$ 
-&= f(k\xi) + c_{b_1, x_1}(b_1/\xi)^{x_1} + c_{b_1, x_1-1}(b_1/\xi)^{{x_1}-1} + \dots + c_{b_2, x_2}(b_2/\xi)^{x_2} + \dots  \\  +$$= f(k\xi) + c_{b_1, x_1}(b_1\xi)^{x_1} + c_{b_1, x_1-1}(b_1\xi)^{{x_1}-1} + \dots + c_{b_2, x_2}(b_2\xi)^{x_2} + \dots  $$  
-= \xi^{y}(g(k\xi) + \left higher \left powers \left of \left \xi^{-1}) \\ +$$= \xi^{y}(g(k\xi) + \text{higher powers of }\xi^{-1}) $$ 
-\approx \xi^{y}g(k\xi) +$$ \approx \xi^{y}g(k\xi)$$ 
-\end{split} + 
-\end{equation}+
  
 다음을 유도할 때 2번째 줄에서는 $b_i/\xi$ 에 대해 급수전개 하였고 3번쨰 줄에서는 $-y = x_1 + x_2 +\dots$ 를 이용하였다.  다음을 유도할 때 2번째 줄에서는 $b_i/\xi$ 에 대해 급수전개 하였고 3번쨰 줄에서는 $-y = x_1 + x_2 +\dots$ 를 이용하였다. 
Line 35: Line 35:
 $$ G(k) \propto k^{-2+\eta} $$ $$ G(k) \propto k^{-2+\eta} $$
 $$ \lim_{k\xi\rightarrow\infty} g(k\xi) \propto (k\xi)^{-2+\eta}  $$ $$ \lim_{k\xi\rightarrow\infty} g(k\xi) \propto (k\xi)^{-2+\eta}  $$
-$$ G(k) = \xi^{y}g(k\xi) \propto \xi^{y](k\xi)^{-2+\eta} \propto k^{-2+\eta} $$+$$ G(k) = \xi^{y}g(k\xi) \propto \xi^{y}(k\xi)^{-2+\eta} \propto k^{-2+\eta} $$
 $$ 2-\eta = y = \gamma/\nu $$  $$ 2-\eta = y = \gamma/\nu $$ 
  
Line 88: Line 88:
   *[[배규호:상관 길이]]   *[[배규호:상관 길이]]
  
-  *[[김민재:가우시안 어림법]] 
  
  
  • 배규호/눈금_바꿈_가설.1494901591.txt.gz
  • Last modified: 2023/09/05 15:46
  • (external edit)