Differences
This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
배규호:눈금_바꿈_가설 [2017/05/24 14:47] – bekuho | 배규호:눈금_바꿈_가설 [2023/09/05 15:46] (current) – external edit 127.0.0.1 | ||
---|---|---|---|
Line 10: | Line 10: | ||
$\xi$ 가 발산할 때 $G(k)$를 위 변수의 함수로 나타낸다면 | $\xi$ 가 발산할 때 $G(k)$를 위 변수의 함수로 나타낸다면 | ||
- | \begin{equation}\notag | + | |
- | \begin{split} | + | |
- | G(k) &= f(k\xi,b_1/\xi,b_2/\xi,...) \\ | + | $$G(k) = f(k\xi, |
- | &= f(k\xi) + \sum_{i=1}\frac{\partial{f(k\xi, | + | $$= f(k\xi) + \sum_{i=1}\frac{\partial{f(k\xi, |
- | &= f(k\xi) + c_{b_1, x_1}(b_1/\xi)^{x_1} + c_{b_1, x_1-1}(b_1/\xi)^{{x_1}-1} + \dots + c_{b_2, x_2}(b_2/\xi)^{x_2} + \dots | + | $$= f(k\xi) + c_{b_1, x_1}(b_1\xi)^{x_1} + c_{b_1, x_1-1}(b_1\xi)^{{x_1}-1} + \dots + c_{b_2, x_2}(b_2\xi)^{x_2} + \dots |
- | & = \xi^{y}(g(k\xi) + \left higher | + | $$= \xi^{y}(g(k\xi) + \text{higher powers of }\xi^{-1}) |
- | & \approx \xi^{y}g(k\xi) | + | $$ \approx \xi^{y}g(k\xi)$$ |
- | \end{split} | + | |
- | \end{equation} | + | |
다음을 유도할 때 2번째 줄에서는 $b_i/\xi$ 에 대해 급수전개 하였고 3번쨰 줄에서는 $-y = x_1 + x_2 +\dots$ 를 이용하였다. | 다음을 유도할 때 2번째 줄에서는 $b_i/\xi$ 에 대해 급수전개 하였고 3번쨰 줄에서는 $-y = x_1 + x_2 +\dots$ 를 이용하였다. | ||
Line 35: | Line 35: | ||
$$ G(k) \propto k^{-2+\eta} $$ | $$ G(k) \propto k^{-2+\eta} $$ | ||
$$ \lim_{k\xi\rightarrow\infty} g(k\xi) \propto (k\xi)^{-2+\eta} | $$ \lim_{k\xi\rightarrow\infty} g(k\xi) \propto (k\xi)^{-2+\eta} | ||
- | $$ G(k) = \xi^{y}g(k\xi) \propto \xi^{y](k\xi)^{-2+\eta} \propto k^{-2+\eta} $$ | + | $$ G(k) = \xi^{y}g(k\xi) \propto \xi^{y}(k\xi)^{-2+\eta} \propto k^{-2+\eta} $$ |
$$ 2-\eta = y = \gamma/\nu $$ | $$ 2-\eta = y = \gamma/\nu $$ | ||