진화생물학:한곳_짝짓기_경쟁

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
진화생물학:한곳_짝짓기_경쟁 [2021/08/02 14:13] – [검증] jiwon진화생물학:한곳_짝짓기_경쟁 [2023/09/05 15:46] (current) – external edit 127.0.0.1
Line 131: Line 131:
 $$ $$
 \begin{cases} \begin{cases}
-x'_1 = f_1(x_1,...,x_{21}) \approx \left.\frac{\partial f_{1}}{\partial x_1}\right\vert_{(1,0,...,0)} x_1 + \cdots + \left.\frac{\partial f_{1}}{\partial x_{21}}\right\vert_{(1,0,...,0)} x_{21}\\ +x'_1 = f_1(x_1,...,x_{21}) \approx \left.\frac{\partial f_{1}}{\partial x_1}\right\vert_{(1,0,...,0)} (x_1 - 1) + \cdots + \left.\frac{\partial f_{1}}{\partial x_{21}}\right\vert_{(1,0,...,0)} x_{21}\\ 
-x'_2 = f_2(x_1,...,x_{21}) \approx \left.\frac{\partial f_{2}}{\partial x_1}\right\vert_{(1,0,...,0)} x_1 + \cdots + \left.\frac{\partial f_{2}}{\partial x_{21}}\right\vert_{(1,0,...,0)} x_{21}\\+x'_2 = f_2(x_1,...,x_{21}) \approx \left.\frac{\partial f_{2}}{\partial x_1}\right\vert_{(1,0,...,0)} (x_1 - 1) + \cdots + \left.\frac{\partial f_{2}}{\partial x_{21}}\right\vert_{(1,0,...,0)} x_{21}\\
 \qquad\qquad\cdot\\ \qquad\qquad\cdot\\
 \qquad\qquad\cdot\\ \qquad\qquad\cdot\\
 \qquad\qquad\cdot\\ \qquad\qquad\cdot\\
-x'_{21} = f_1(x_1,...,x_{21}) \approx \left.\frac{\partial f_{21}}{\partial x_1}\right\vert_{(1,0,...,0)} x_1 + \cdots + \left.\frac{\partial f_{21}}{\partial x_{21}}\right\vert_{(1,0,...,0)} x_{21}\\+x'_{21} = f_{21}(x_1,...,x_{21}) \approx \left.\frac{\partial f_{21}}{\partial x_1}\right\vert_{(1,0,...,0)} (x_1 - 1) + \cdots + \left.\frac{\partial f_{21}}{\partial x_{21}}\right\vert_{(1,0,...,0)} x_{21}\\
 \end{cases} \end{cases}
 $$ $$
Line 146: Line 146:
  
 그리고 한 쌍이 $(RRXR)$이라고 가정하고 $x'_2,x'_3,x'_4,x'_5,x'_9$를 가지고 5x5 행렬을 써보면 이 행렬이 윗 절의 그리고 한 쌍이 $(RRXR)$이라고 가정하고 $x'_2,x'_3,x'_4,x'_5,x'_9$를 가지고 5x5 행렬을 써보면 이 행렬이 윗 절의
-$$\begin{pmatrix} +$$
-x'_{SS\times S}\\ +
-x'_{SS\times R}\\ +
-x'_{RS\times S}\\ +
-x'_{RS\times R}\\ +
-x'_{RR\times S} +
-\end{pmatrix} +
-=(1-r)K+
 \begin{pmatrix} \begin{pmatrix}
 pu & 0 & \frac{1}{4N} & 0 & 0\\ pu & 0 & \frac{1}{4N} & 0 & 0\\
Line 161: Line 154:
 (N-1)p & (N-1)p & \frac{N-1}{2N} & \frac{2N-1}{4N} & 0 (N-1)p & (N-1)p & \frac{N-1}{2N} & \frac{2N-1}{4N} & 0
 \end{pmatrix} \end{pmatrix}
-\begin{pmatrix} +
-x_{SS\times S}\\ +
-x_{SS\times R}\\ +
-x_{RS\times S}\\ +
-x_{RS\times R}\\ +
-x_{RR\times S} +
-\end{pmatrix}+
 $$ $$
  
  • 진화생물학/한곳_짝짓기_경쟁.1627881218.txt.gz
  • Last modified: 2023/09/05 15:46
  • (external edit)