배규호:눈금_바꿈_가설

This is an old revision of the document!


눈금 바꿈 가설(Scaling Hypothesis)

눈금 바꿈 가설은 강자성체의 상전이 온도 근처에서 일어나는 모든 특이 현상들이 자성체를 이루는 스핀들의 긴 범위에 걸쳐있는 상관관계 떄문에 나타난다는 가설이다.

이 때 스핀들이 상관관계를 가지는 범위를 상관 길이라고 부른다. 중요한 점은 상관 길이가 특정한 함수의 가우시안 어림을 푸는 과정에서 나오는 것만은 아니라는 사실이다.

자성체의 스핀 상관 함수에서 파수 벡터 공간의 상관함수 $G(k)$ 는 $k=0$ 에서 $G(0) = \chi/T$ 인 봉우리값과 그 주변으로 폭 $\xi^{-1}$ 를 가지는 뾰족한 함수로 근사될 수 있다.

이때 폭을 상관 길이의 역수라고 가정하는데 온도가 상전이 온도 근처이고 외부에서 아무런 자기장이 걸리지 않았을 때 테일러 전개의 2차 미분과 상관 길이가 발산한다는 사실을 이용하여

테일러 전개를 이용하여 함수를 근사하면 상관 길이의 값을 추측할 수 있다.

\begin{equation}\notag \xi^{2} = -\frac{1}{2}G^{-1}(0)(d^{2}G(k)/dk^{2})_{k=0} \end{equation}

이 때 $G(k)$가 0 근처에서 매우 뾰족한 함수이기 떄문에 2차 미분의 값은 매우 클 것이다. 따라서 $\xi$ 는 임계온도 근처에서 발산한다는 사실을 알 수 있다.

따라서 상관길이 $\xi$에 대해 아래와 같이 쓸 수 있다.

$$\xi\propto |T-T_c|^{-\nu}, T>T_c$$ $$\xi\propto |T-T_c|^{-\nu^{\prime}}, T<T_c$$

여기서 $\nu$ 와 $\nu^{\prime}$을 같다고 가정한다. (일반적으로 두 값은 다르다. 같다고 두는것은 꽤 그럴싸 한데 그 이유는 뒤에서 설명한다.)

  • 배규호/눈금_바꿈_가설.1494208826.txt.gz
  • Last modified: 2023/09/05 15:46
  • (external edit)